interfaces.fsl.dti

BEDPOSTX5

Link to code

Wraps the executable command bedpostx.

BEDPOSTX stands for Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques. The X stands for modelling Crossing Fibres. bedpostx runs Markov Chain Monte Carlo sampling to build up distributions on diffusion parameters at each voxel. It creates all the files necessary for running probabilistic tractography. For an overview of the modelling carried out within bedpostx see this technical report.

Note

Consider using nipype.workflows.fsl.dmri.create_bedpostx_pipeline() instead.

Example

>>> from nipype.interfaces import fsl
>>> bedp = fsl.BEDPOSTX5(bvecs='bvecs', bvals='bvals', dwi='diffusion.nii',
...                     mask='mask.nii', n_fibres=1)
>>> bedp.cmdline
'bedpostx bedpostx -b 0 --burnin_noard=0 --forcedir -n 1 -j 5000 -s 1 --updateproposalevery=40'

Inputs:

[Mandatory]
n_fibres: (a long integer >= 1, nipype default value: 2)
        Maximum number of fibres to fit in each voxel
        argument: ``-n %d``
bvecs: (an existing file name)
        b vectors file
dwi: (an existing file name)
        diffusion weighted image data file
bvals: (an existing file name)
        b values file
out_dir: (a directory name, nipype default value: bedpostx)
        output directory
        argument: ``%s``, position: 1
mask: (an existing file name)
        bet binary mask file

[Optional]
f0_ard: (a boolean)
        Noise floor model: add to the model an unattenuated signal
        compartment f0
        argument: ``--f0 --ardf0``
        mutually_exclusive: f0_noard, f0_ard, all_ard
no_spat: (a boolean)
        Initialise with tensor, not spatially
        argument: ``--nospat``
        mutually_exclusive: no_spat, non_linear, cnlinear
cnlinear: (a boolean)
        Initialise with constrained nonlinear fitting
        argument: ``--cnonlinear``
        mutually_exclusive: no_spat, non_linear, cnlinear
all_ard: (a boolean)
        Turn ARD on on all fibres
        argument: ``--allard``
        mutually_exclusive: no_ard, all_ard
fudge: (an integer (int or long))
        ARD fudge factor
        argument: ``-w %d``
rician: (a boolean)
        use Rician noise modeling
        argument: ``--rician``
no_ard: (a boolean)
        Turn ARD off on all fibres
        argument: ``--noard``
        mutually_exclusive: no_ard, all_ard
f0_noard: (a boolean)
        Noise floor model: add to the model an unattenuated signal
        compartment f0
        argument: ``--f0``
        mutually_exclusive: f0_noard, f0_ard
model: (1 or 2 or 3)
        use monoexponential (1, default, required for single-shell) or
        multiexponential (2, multi-shell) model
        argument: ``-model %d``
burn_in_no_ard: (a long integer >= 0, nipype default value: 0)
        num of burnin jumps before the ard is imposed
        argument: ``--burnin_noard=%d``
n_jumps: (an integer (int or long), nipype default value: 5000)
        Num of jumps to be made by MCMC
        argument: ``-j %d``
gradnonlin: (a boolean)
        consider gradient nonlinearities, default off
        argument: ``-g``
seed: (an integer (int or long))
        seed for pseudo random number generator
        argument: ``--seed=%d``
update_proposal_every: (a long integer >= 1, nipype default value:
          40)
        Num of jumps for each update to the proposal density std (MCMC)
        argument: ``--updateproposalevery=%d``
use_gpu: (a boolean)
        Use the GPU version of bedpostx
logdir: (a directory name)
        argument: ``--logdir=%s``
force_dir: (a boolean, nipype default value: True)
        use the actual directory name given (do not add + to make a new
        directory)
        argument: ``--forcedir``
sample_every: (a long integer >= 0, nipype default value: 1)
        Num of jumps for each sample (MCMC)
        argument: ``-s %d``
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type
burn_in: (a long integer >= 0, nipype default value: 0)
        Total num of jumps at start of MCMC to be discarded
        argument: ``-b %d``
grad_dev: (an existing file name)
        grad_dev file, if gradnonlin, -g is True
non_linear: (a boolean)
        Initialise with nonlinear fitting
        argument: ``--nonlinear``
        mutually_exclusive: no_spat, non_linear, cnlinear
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables

Outputs:

merged_thsamples: (a list of items which are an existing file name)
        Samples from the distribution on theta
merged_fsamples: (a list of items which are an existing file name)
        Samples from the distribution on anisotropic volume fraction
merged_phsamples: (a list of items which are an existing file name)
        Samples from the distribution on phi
mean_thsamples: (a list of items which are an existing file name)
        Mean of distribution on theta
dyads: (a list of items which are an existing file name)
        Mean of PDD distribution in vector form.
dyads_dispersion: (a list of items which are an existing file name)
        Dispersion
mean_phsamples: (a list of items which are an existing file name)
        Mean of distribution on phi
mean_fsamples: (a list of items which are an existing file name)
        Mean of distribution on f anisotropy
mean_S0samples: (an existing file name)
        Mean of distribution on T2wbaseline signal intensity S0
mean_dsamples: (an existing file name)
        Mean of distribution on diffusivity d

References:

None

DTIFit

Link to code

Wraps the executable command dtifit.

Use FSL dtifit command for fitting a diffusion tensor model at each voxel

Example

>>> from nipype.interfaces import fsl
>>> dti = fsl.DTIFit()
>>> dti.inputs.dwi = 'diffusion.nii'
>>> dti.inputs.bvecs = 'bvecs'
>>> dti.inputs.bvals = 'bvals'
>>> dti.inputs.base_name = 'TP'
>>> dti.inputs.mask = 'mask.nii'
>>> dti.cmdline
'dtifit -k diffusion.nii -o TP -m mask.nii -r bvecs -b bvals'

Inputs:

[Mandatory]
dwi: (an existing file name)
        diffusion weighted image data file
        argument: ``-k %s``, position: 0
bvecs: (an existing file name)
        b vectors file
        argument: ``-r %s``, position: 3
bvals: (an existing file name)
        b values file
        argument: ``-b %s``, position: 4
mask: (an existing file name)
        bet binary mask file
        argument: ``-m %s``, position: 2

[Optional]
max_y: (an integer (int or long))
        max y
        argument: ``-Y %d``
gradnonlin: (an existing file name)
        gradient non linearities
        argument: ``--gradnonlin=%s``
little_bit: (a boolean)
        only process small area of brain
        argument: ``--littlebit``
cni: (an existing file name)
        input counfound regressors
        argument: ``--cni=%s``
min_x: (an integer (int or long))
        min x
        argument: ``-x %d``
sse: (a boolean)
        output sum of squared errors
        argument: ``--sse``
min_z: (an integer (int or long))
        min z
        argument: ``-z %d``
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables
base_name: (a unicode string, nipype default value: dtifit_)
        base_name that all output files will start with
        argument: ``-o %s``, position: 1
save_tensor: (a boolean)
        save the elements of the tensor
        argument: ``--save_tensor``
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type
max_x: (an integer (int or long))
        max x
        argument: ``-X %d``
min_y: (an integer (int or long))
        min y
        argument: ``-y %d``
max_z: (an integer (int or long))
        max z
        argument: ``-Z %d``
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``

Outputs:

L1: (an existing file name)
        path/name of file with the 1st eigenvalue
tensor: (an existing file name)
        path/name of file with the 4D tensor volume
FA: (an existing file name)
        path/name of file with the fractional anisotropy
MO: (an existing file name)
        path/name of file with the mode of anisotropy
L3: (an existing file name)
        path/name of file with the 3rd eigenvalue
V1: (an existing file name)
        path/name of file with the 1st eigenvector
V3: (an existing file name)
        path/name of file with the 3rd eigenvector
S0: (an existing file name)
        path/name of file with the raw T2 signal with no diffusion weighting
sse: (an existing file name)
        path/name of file with the summed squared error
V2: (an existing file name)
        path/name of file with the 2nd eigenvector
L2: (an existing file name)
        path/name of file with the 2nd eigenvalue
MD: (an existing file name)
        path/name of file with the mean diffusivity

References:

None

DistanceMap

Link to code

Wraps the executable command distancemap.

Use FSL’s distancemap to generate a map of the distance to the nearest nonzero voxel.

Example

>>> import nipype.interfaces.fsl as fsl
>>> mapper = fsl.DistanceMap()
>>> mapper.inputs.in_file = "skeleton_mask.nii.gz"
>>> mapper.run() 

Inputs:

[Mandatory]
in_file: (an existing file name)
        image to calculate distance values for
        argument: ``--in=%s``

[Optional]
invert_input: (a boolean)
        invert input image
        argument: ``--invert``
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type
mask_file: (an existing file name)
        binary mask to contrain calculations
        argument: ``--mask=%s``
local_max_file: (a boolean or a file name)
        write an image of the local maxima
        argument: ``--localmax=%s``
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``
distance_map: (a file name)
        distance map to write
        argument: ``--out=%s``

Outputs:

local_max_file: (a file name)
        image of local maxima
distance_map: (an existing file name)
        value is distance to nearest nonzero voxels

References:

None

FindTheBiggest

Link to code

Wraps the executable command find_the_biggest.

Use FSL find_the_biggest for performing hard segmentation on the outputs of connectivity-based thresholding in probtrack. For complete details, see the FDT Documentation.

Example

>>> from nipype.interfaces import fsl
>>> ldir = ['seeds_to_M1.nii', 'seeds_to_M2.nii']
>>> fBig = fsl.FindTheBiggest(in_files=ldir, out_file='biggestSegmentation')
>>> fBig.cmdline
'find_the_biggest seeds_to_M1.nii seeds_to_M2.nii biggestSegmentation'

Inputs:

[Mandatory]
in_files: (a list of items which are an existing file name)
        a list of input volumes or a singleMatrixFile
        argument: ``%s``, position: 0

[Optional]
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables
out_file: (a file name)
        file with the resulting segmentation
        argument: ``%s``, position: 2
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type

Outputs:

out_file: (an existing file name)
        output file indexed in order of input files
        argument: ``%s``

References:

None

MakeDyadicVectors

Link to code

Wraps the executable command make_dyadic_vectors.

Create vector volume representing mean principal diffusion direction and its uncertainty (dispersion)

Inputs:

[Mandatory]
phi_vol: (an existing file name)
        argument: ``%s``, position: 1
theta_vol: (an existing file name)
        argument: ``%s``, position: 0

[Optional]
output: (a file name, nipype default value: dyads)
        argument: ``%s``, position: 3
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type
perc: (a float)
        the {perc}% angle of the output cone of uncertainty (output will be
        in degrees)
        argument: ``%f``, position: 4
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``
mask: (an existing file name)
        argument: ``%s``, position: 2

Outputs:

dyads: (an existing file name)
dispersion: (an existing file name)

References:

None

ProbTrackX

Link to code

Wraps the executable command probtrackx.

Use FSL probtrackx for tractography on bedpostx results

Examples

>>> from nipype.interfaces import fsl
>>> pbx = fsl.ProbTrackX(samples_base_name='merged', mask='mask.nii',     seed='MASK_average_thal_right.nii', mode='seedmask',     xfm='trans.mat', n_samples=3, n_steps=10, force_dir=True, opd=True,     os2t=True, target_masks = ['targets_MASK1.nii', 'targets_MASK2.nii'],     thsamples='merged_thsamples.nii', fsamples='merged_fsamples.nii',     phsamples='merged_phsamples.nii', out_dir='.')
>>> pbx.cmdline
'probtrackx --forcedir -m mask.nii --mode=seedmask --nsamples=3 --nsteps=10 --opd --os2t --dir=. --samples=merged --seed=MASK_average_thal_right.nii --targetmasks=targets.txt --xfm=trans.mat'

Inputs:

[Mandatory]
seed: (an existing file name or a list of items which are an existing
          file name or a list of items which are a list of from 3 to 3 items
          which are an integer (int or long))
        seed volume(s), or voxel(s) or freesurfer label file
        argument: ``--seed=%s``
thsamples: (a list of items which are an existing file name)
fsamples: (a list of items which are an existing file name)
phsamples: (a list of items which are an existing file name)
mask: (an existing file name)
        bet binary mask file in diffusion space
        argument: ``-m %s``

[Optional]
rand_fib: (0 or 1 or 2 or 3)
        options: 0 - default, 1 - to randomly sample initial fibres (with f
        > fibthresh), 2 - to sample in proportion fibres (with f>fibthresh)
        to f, 3 - to sample ALL populations at random (even if f<fibthresh)
        argument: ``--randfib=%d``
stop_mask: (an existing file name)
        stop tracking at locations given by this mask file
        argument: ``--stop=%s``
mod_euler: (a boolean)
        use modified euler streamlining
        argument: ``--modeuler``
target_masks: (a list of items which are a file name)
        list of target masks - required for seeds_to_targets classification
        argument: ``--targetmasks=%s``
mask2: (an existing file name)
        second bet binary mask (in diffusion space) in twomask_symm mode
        argument: ``--mask2=%s``
sample_random_points: (a boolean)
        sample random points within seed voxels
        argument: ``--sampvox``
fibst: (an integer (int or long))
        force a starting fibre for tracking - default=1, i.e. first fibre
        orientation. Only works if randfib==0
        argument: ``--fibst=%d``
mode: ('simple' or 'two_mask_symm' or 'seedmask')
        options: simple (single seed voxel), seedmask (mask of seed voxels),
        twomask_symm (two bet binary masks)
        argument: ``--mode=%s``
random_seed: (a boolean)
        random seed
        argument: ``--rseed``
waypoints: (an existing file name)
        waypoint mask or ascii list of waypoint masks - only keep paths
        going through ALL the masks
        argument: ``--waypoints=%s``
n_samples: (an integer (int or long), nipype default value: 5000)
        number of samples - default=5000
        argument: ``--nsamples=%d``
force_dir: (a boolean, nipype default value: True)
        use the actual directory name given - i.e. do not add + to make a
        new directory
        argument: ``--forcedir``
xfm: (an existing file name)
        transformation matrix taking seed space to DTI space (either FLIRT
        matrix or FNIRT warp_field) - default is identity
        argument: ``--xfm=%s``
samples_base_name: (a unicode string, nipype default value: merged)
        the rootname/base_name for samples files
        argument: ``--samples=%s``
seed_ref: (an existing file name)
        reference vol to define seed space in simple mode - diffusion space
        assumed if absent
        argument: ``--seedref=%s``
os2t: (a boolean)
        Outputs seeds to targets
        argument: ``--os2t``
out_dir: (an existing directory name)
        directory to put the final volumes in
        argument: ``--dir=%s``
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``
n_steps: (an integer (int or long))
        number of steps per sample - default=2000
        argument: ``--nsteps=%d``
mesh: (an existing file name)
        Freesurfer-type surface descriptor (in ascii format)
        argument: ``--mesh=%s``
verbose: (0 or 1 or 2)
        Verbose level, [0-2]. Level 2 is required to output particle files.
        argument: ``--verbose=%d``
dist_thresh: (a float)
        discards samples shorter than this threshold (in mm - default=0)
        argument: ``--distthresh=%.3f``
loop_check: (a boolean)
        perform loop_checks on paths - slower, but allows lower curvature
        threshold
        argument: ``--loopcheck``
c_thresh: (a float)
        curvature threshold - default=0.2
        argument: ``--cthr=%.3f``
network: (a boolean)
        activate network mode - only keep paths going through at least one
        seed mask (required if multiple seed masks)
        argument: ``--network``
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type
opd: (a boolean, nipype default value: True)
        outputs path distributions
        argument: ``--opd``
use_anisotropy: (a boolean)
        use anisotropy to constrain tracking
        argument: ``--usef``
avoid_mp: (an existing file name)
        reject pathways passing through locations given by this mask
        argument: ``--avoid=%s``
correct_path_distribution: (a boolean)
        correct path distribution for the length of the pathways
        argument: ``--pd``
step_length: (a float)
        step_length in mm - default=0.5
        argument: ``--steplength=%.3f``
s2tastext: (a boolean)
        output seed-to-target counts as a text file (useful when seeding
        from a mesh)
        argument: ``--s2tastext``
inv_xfm: (a file name)
        transformation matrix taking DTI space to seed space (compulsory
        when using a warp_field for seeds_to_dti)
        argument: ``--invxfm=%s``
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables

Outputs:

way_total: (an existing file name)
        path/name of a text file containing a single number corresponding to
        the total number of generated tracts that have not been rejected by
        inclusion/exclusion mask criteria
particle_files: (a list of items which are an existing file name)
        Files describing all of the tract samples. Generated only if verbose
        is set to 2
fdt_paths: (a list of items which are an existing file name)
        path/name of a 3D image file containing the output connectivity
        distribution to the seed mask
targets: (a list of items which are an existing file name)
        a list with all generated seeds_to_target files
log: (an existing file name)
        path/name of a text record of the command that was run

References:

None

ProbTrackX2

Link to code

Wraps the executable command probtrackx2.

Use FSL probtrackx2 for tractography on bedpostx results

Examples

>>> from nipype.interfaces import fsl
>>> pbx2 = fsl.ProbTrackX2()
>>> pbx2.inputs.seed = 'seed_source.nii.gz'
>>> pbx2.inputs.thsamples = 'merged_th1samples.nii.gz'
>>> pbx2.inputs.fsamples = 'merged_f1samples.nii.gz'
>>> pbx2.inputs.phsamples = 'merged_ph1samples.nii.gz'
>>> pbx2.inputs.mask = 'nodif_brain_mask.nii.gz'
>>> pbx2.inputs.out_dir = '.'
>>> pbx2.inputs.n_samples = 3
>>> pbx2.inputs.n_steps = 10
>>> pbx2.cmdline
'probtrackx2 --forcedir -m nodif_brain_mask.nii.gz --nsamples=3 --nsteps=10 --opd --dir=. --samples=merged --seed=seed_source.nii.gz'

Inputs:

[Mandatory]
seed: (an existing file name or a list of items which are an existing
          file name or a list of items which are a list of from 3 to 3 items
          which are an integer (int or long))
        seed volume(s), or voxel(s) or freesurfer label file
        argument: ``--seed=%s``
thsamples: (a list of items which are an existing file name)
fsamples: (a list of items which are an existing file name)
phsamples: (a list of items which are an existing file name)
mask: (an existing file name)
        bet binary mask file in diffusion space
        argument: ``-m %s``

[Optional]
rand_fib: (0 or 1 or 2 or 3)
        options: 0 - default, 1 - to randomly sample initial fibres (with f
        > fibthresh), 2 - to sample in proportion fibres (with f>fibthresh)
        to f, 3 - to sample ALL populations at random (even if f<fibthresh)
        argument: ``--randfib=%d``
target_masks: (a list of items which are a file name)
        list of target masks - required for seeds_to_targets classification
        argument: ``--targetmasks=%s``
sample_random_points: (a boolean)
        sample random points within seed voxels
        argument: ``--sampvox``
waypoints: (an existing file name)
        waypoint mask or ascii list of waypoint masks - only keep paths
        going through ALL the masks
        argument: ``--waypoints=%s``
distthresh3: (a float)
        Discards samples (in matrix3) shorter than this threshold (in mm -
        default=0)
        argument: ``--distthresh3=%.3f``
lrtarget3: (an existing file name)
        Column-space mask used for Nxn connectivity matrix
        argument: ``--lrtarget3=%s``
omatrix3: (a boolean)
        Output matrix3 (NxN connectivity matrix)
        argument: ``--omatrix3``
        requires: target3, lrtarget3
xfm: (an existing file name)
        transformation matrix taking seed space to DTI space (either FLIRT
        matrix or FNIRT warp_field) - default is identity
        argument: ``--xfm=%s``
out_dir: (an existing directory name)
        directory to put the final volumes in
        argument: ``--dir=%s``
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``
n_steps: (an integer (int or long))
        number of steps per sample - default=2000
        argument: ``--nsteps=%d``
target2: (an existing file name)
        Low resolution binary brain mask for storing connectivity
        distribution in matrix2 mode
        argument: ``--target2=%s``
verbose: (0 or 1 or 2)
        Verbose level, [0-2]. Level 2 is required to output particle files.
        argument: ``--verbose=%d``
dist_thresh: (a float)
        discards samples shorter than this threshold (in mm - default=0)
        argument: ``--distthresh=%.3f``
os2t: (a boolean)
        Outputs seeds to targets
        argument: ``--os2t``
network: (a boolean)
        activate network mode - only keep paths going through at least one
        seed mask (required if multiple seed masks)
        argument: ``--network``
omatrix4: (a boolean)
        Output matrix4 - DtiMaskToSeed (special Oxford Sparse Format)
        argument: ``--omatrix4``
onewaycondition: (a boolean)
        Apply waypoint conditions to each half tract separately
        argument: ``--onewaycondition``
avoid_mp: (an existing file name)
        reject pathways passing through locations given by this mask
        argument: ``--avoid=%s``
fopd: (an existing file name)
        Other mask for binning tract distribution
        argument: ``--fopd=%s``
target4: (an existing file name)
        Brain mask in DTI space
        argument: ``--target4=%s``
c_thresh: (a float)
        curvature threshold - default=0.2
        argument: ``--cthr=%.3f``
step_length: (a float)
        step_length in mm - default=0.5
        argument: ``--steplength=%.3f``
s2tastext: (a boolean)
        output seed-to-target counts as a text file (useful when seeding
        from a mesh)
        argument: ``--s2tastext``
samples_base_name: (a unicode string, nipype default value: merged)
        the rootname/base_name for samples files
        argument: ``--samples=%s``
stop_mask: (an existing file name)
        stop tracking at locations given by this mask file
        argument: ``--stop=%s``
mod_euler: (a boolean)
        use modified euler streamlining
        argument: ``--modeuler``
opd: (a boolean, nipype default value: True)
        outputs path distributions
        argument: ``--opd``
correct_path_distribution: (a boolean)
        correct path distribution for the length of the pathways
        argument: ``--pd``
waycond: ('OR' or 'AND')
        Waypoint condition. Either "AND" (default) or "OR"
        argument: ``--waycond=%s``
fibst: (an integer (int or long))
        force a starting fibre for tracking - default=1, i.e. first fibre
        orientation. Only works if randfib==0
        argument: ``--fibst=%d``
random_seed: (a boolean)
        random seed
        argument: ``--rseed``
omatrix2: (a boolean)
        Output matrix2 - SeedToLowResMask
        argument: ``--omatrix2``
        requires: target2
simple: (a boolean)
        rack from a list of voxels (seed must be a ASCII list of
        coordinates)
        argument: ``--simple``
omatrix1: (a boolean)
        Output matrix1 - SeedToSeed Connectivity
        argument: ``--omatrix1``
wayorder: (a boolean)
        Reject streamlines that do not hit waypoints in given order. Only
        valid if waycond=AND
        argument: ``--wayorder``
n_samples: (an integer (int or long), nipype default value: 5000)
        number of samples - default=5000
        argument: ``--nsamples=%d``
distthresh1: (a float)
        Discards samples (in matrix1) shorter than this threshold (in mm -
        default=0)
        argument: ``--distthresh1=%.3f``
seed_ref: (an existing file name)
        reference vol to define seed space in simple mode - diffusion space
        assumed if absent
        argument: ``--seedref=%s``
loop_check: (a boolean)
        perform loop_checks on paths - slower, but allows lower curvature
        threshold
        argument: ``--loopcheck``
colmask4: (an existing file name)
        Mask for columns of matrix4 (default=seed mask)
        argument: ``--colmask4=%s``
meshspace: ('caret' or 'freesurfer' or 'first' or 'vox')
        Mesh reference space - either "caret" (default) or "freesurfer" or
        "first" or "vox"
        argument: ``--meshspace=%s``
force_dir: (a boolean, nipype default value: True)
        use the actual directory name given - i.e. do not add + to make a
        new directory
        argument: ``--forcedir``
use_anisotropy: (a boolean)
        use anisotropy to constrain tracking
        argument: ``--usef``
target3: (an existing file name)
        Mask used for NxN connectivity matrix (or Nxn if lrtarget3 is set)
        argument: ``--target3=%s``
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables
inv_xfm: (a file name)
        transformation matrix taking DTI space to seed space (compulsory
        when using a warp_field for seeds_to_dti)
        argument: ``--invxfm=%s``

Outputs:

network_matrix: (an existing file name)
        the network matrix generated by --omatrix1 option
particle_files: (a list of items which are an existing file name)
        Files describing all of the tract samples. Generated only if verbose
        is set to 2
matrix2_dot: (an existing file name)
        Output matrix2.dot - SeedToLowResMask
targets: (a list of items which are an existing file name)
        a list with all generated seeds_to_target files
matrix3_dot: (an existing file name)
        Output matrix3 - NxN connectivity matrix
log: (an existing file name)
        path/name of a text record of the command that was run
matrix1_dot: (an existing file name)
        Output matrix1.dot - SeedToSeed Connectivity
way_total: (an existing file name)
        path/name of a text file containing a single number corresponding to
        the total number of generated tracts that have not been rejected by
        inclusion/exclusion mask criteria
fdt_paths: (a list of items which are an existing file name)
        path/name of a 3D image file containing the output connectivity
        distribution to the seed mask
lookup_tractspace: (an existing file name)
        lookup_tractspace generated by --omatrix2 option

References:

None

ProjThresh

Link to code

Wraps the executable command proj_thresh.

Use FSL proj_thresh for thresholding some outputs of probtrack For complete details, see the FDT Documentation <http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_thresh.html>

Example

>>> from nipype.interfaces import fsl
>>> ldir = ['seeds_to_M1.nii', 'seeds_to_M2.nii']
>>> pThresh = fsl.ProjThresh(in_files=ldir, threshold=3)
>>> pThresh.cmdline
'proj_thresh seeds_to_M1.nii seeds_to_M2.nii 3'

Inputs:

[Mandatory]
in_files: (a list of items which are an existing file name)
        a list of input volumes
        argument: ``%s``, position: 0
threshold: (an integer (int or long))
        threshold indicating minimum number of seed voxels entering this
        mask region
        argument: ``%d``, position: 1

[Optional]
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type

Outputs:

out_files: (a list of items which are an existing file name)
        path/name of output volume after thresholding

References:

None

TractSkeleton

Link to code

Wraps the executable command tbss_skeleton.

Use FSL’s tbss_skeleton to skeletonise an FA image or project arbitrary values onto a skeleton.

There are two ways to use this interface. To create a skeleton from an FA image, just supply the in_file and set skeleton_file to True (or specify a skeleton filename. To project values onto a skeleton, you must set project_data to True, and then also supply values for threshold, distance_map, and data_file. The search_mask_file and use_cingulum_mask inputs are also used in data projection, but use_cingulum_mask is set to True by default. This mask controls where the projection algorithm searches within a circular space around a tract, rather than in a single perpindicular direction.

Example

>>> import nipype.interfaces.fsl as fsl
>>> skeletor = fsl.TractSkeleton()
>>> skeletor.inputs.in_file = "all_FA.nii.gz"
>>> skeletor.inputs.skeleton_file = True
>>> skeletor.run() 

Inputs:

[Mandatory]
in_file: (an existing file name)
        input image (typcially mean FA volume)
        argument: ``-i %s``

[Optional]
projected_data: (a file name)
        input data projected onto skeleton
project_data: (a boolean)
        project data onto skeleton
        argument: ``-p %.3f %s %s %s %s``
        requires: threshold, distance_map, data_file
alt_data_file: (an existing file name)
        4D non-FA data to project onto skeleton
        argument: ``-a %s``
alt_skeleton: (an existing file name)
        alternate skeleton to use
        argument: ``-s %s``
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type
data_file: (an existing file name)
        4D data to project onto skeleton (usually FA)
threshold: (a float)
        skeleton threshold value
search_mask_file: (an existing file name)
        mask in which to use alternate search rule
        mutually_exclusive: use_cingulum_mask
skeleton_file: (a boolean or a file name)
        write out skeleton image
        argument: ``-o %s``
use_cingulum_mask: (a boolean, nipype default value: True)
        perform alternate search using built-in cingulum mask
        mutually_exclusive: search_mask_file
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``
distance_map: (an existing file name)
        distance map image

Outputs:

projected_data: (a file name)
        input data projected onto skeleton
skeleton_file: (a file name)
        tract skeleton image

References:

None

VecReg

Link to code

Wraps the executable command vecreg.

Use FSL vecreg for registering vector data For complete details, see the FDT Documentation <http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_vecreg.html>

Example

>>> from nipype.interfaces import fsl
>>> vreg = fsl.VecReg(in_file='diffusion.nii',                  affine_mat='trans.mat',                  ref_vol='mni.nii',                  out_file='diffusion_vreg.nii')
>>> vreg.cmdline
'vecreg -t trans.mat -i diffusion.nii -o diffusion_vreg.nii -r mni.nii'

Inputs:

[Mandatory]
in_file: (an existing file name)
        filename for input vector or tensor field
        argument: ``-i %s``
ref_vol: (an existing file name)
        filename for reference (target) volume
        argument: ``-r %s``

[Optional]
ref_mask: (an existing file name)
        brain mask in output space (useful for speed up of nonlinear reg)
        argument: ``--refmask=%s``
out_file: (a file name)
        filename for output registered vector or tensor field
        argument: ``-o %s``
rotation_warp: (an existing file name)
        filename for secondary warp field if set, this will be used for the
        rotation of the vector/tensor field
        argument: ``--rotwarp=%s``
interpolation: ('nearestneighbour' or 'trilinear' or 'sinc' or
          'spline')
        interpolation method : nearestneighbour, trilinear (default), sinc
        or spline
        argument: ``--interp=%s``
rotation_mat: (an existing file name)
        filename for secondary affine matrix if set, this will be used for
        the rotation of the vector/tensor field
        argument: ``--rotmat=%s``
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type
warp_field: (an existing file name)
        filename for 4D warp field for nonlinear registration
        argument: ``-w %s``
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables
affine_mat: (an existing file name)
        filename for affine transformation matrix
        argument: ``-t %s``
mask: (an existing file name)
        brain mask in input space
        argument: ``-m %s``

Outputs:

out_file: (an existing file name)
        path/name of filename for the registered vector or tensor field

References:

None

XFibres5

Link to code

Wraps the executable command xfibres.

Perform model parameters estimation for local (voxelwise) diffusion parameters

Inputs:

[Mandatory]
n_fibres: (a long integer >= 1, nipype default value: 2)
        Maximum number of fibres to fit in each voxel
        argument: ``--nfibres=%d``
dwi: (an existing file name)
        diffusion weighted image data file
        argument: ``--data=%s``
bvecs: (an existing file name)
        b vectors file
        argument: ``--bvecs=%s``
bvals: (an existing file name)
        b values file
        argument: ``--bvals=%s``
mask: (an existing file name)
        brain binary mask file (i.e. from BET)
        argument: ``--mask=%s``

[Optional]
f0_ard: (a boolean)
        Noise floor model: add to the model an unattenuated signal
        compartment f0
        argument: ``--f0 --ardf0``
        mutually_exclusive: f0_noard, f0_ard, all_ard
no_spat: (a boolean)
        Initialise with tensor, not spatially
        argument: ``--nospat``
        mutually_exclusive: no_spat, non_linear, cnlinear
cnlinear: (a boolean)
        Initialise with constrained nonlinear fitting
        argument: ``--cnonlinear``
        mutually_exclusive: no_spat, non_linear, cnlinear
all_ard: (a boolean)
        Turn ARD on on all fibres
        argument: ``--allard``
        mutually_exclusive: no_ard, all_ard
fudge: (an integer (int or long))
        ARD fudge factor
        argument: ``--fudge=%d``
no_ard: (a boolean)
        Turn ARD off on all fibres
        argument: ``--noard``
        mutually_exclusive: no_ard, all_ard
f0_noard: (a boolean)
        Noise floor model: add to the model an unattenuated signal
        compartment f0
        argument: ``--f0``
        mutually_exclusive: f0_noard, f0_ard
model: (1 or 2 or 3)
        use monoexponential (1, default, required for single-shell) or
        multiexponential (2, multi-shell) model
        argument: ``--model=%d``
burn_in_no_ard: (a long integer >= 0, nipype default value: 0)
        num of burnin jumps before the ard is imposed
        argument: ``--burnin_noard=%d``
n_jumps: (an integer (int or long), nipype default value: 5000)
        Num of jumps to be made by MCMC
        argument: ``--njumps=%d``
gradnonlin: (an existing file name)
        gradient file corresponding to slice
        argument: ``--gradnonlin=%s``
seed: (an integer (int or long))
        seed for pseudo random number generator
        argument: ``--seed=%d``
update_proposal_every: (a long integer >= 1, nipype default value:
          40)
        Num of jumps for each update to the proposal density std (MCMC)
        argument: ``--updateproposalevery=%d``
logdir: (a directory name, nipype default value: .)
        argument: ``--logdir=%s``
rician: (a boolean)
        use Rician noise modeling
        argument: ``--rician``
force_dir: (a boolean, nipype default value: True)
        use the actual directory name given (do not add + to make a new
        directory)
        argument: ``--forcedir``
sample_every: (a long integer >= 0, nipype default value: 1)
        Num of jumps for each sample (MCMC)
        argument: ``--sampleevery=%d``
args: (a unicode string)
        Additional parameters to the command
        argument: ``%s``
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_GZ' or 'NIFTI' or
          'NIFTI_PAIR')
        FSL output type
burn_in: (a long integer >= 0, nipype default value: 0)
        Total num of jumps at start of MCMC to be discarded
        argument: ``--burnin=%d``
non_linear: (a boolean)
        Initialise with nonlinear fitting
        argument: ``--nonlinear``
        mutually_exclusive: no_spat, non_linear, cnlinear
environ: (a dictionary with keys which are a bytes or None or a value
          of class 'str' and with values which are a bytes or None or a
          value of class 'str', nipype default value: {})
        Environment variables

Outputs:

mean_fsamples: (a list of items which are an existing file name)
        Mean of distribution on f anisotropy
phsamples: (a list of items which are an existing file name)
        phi samples, per fiber
mean_tausamples: (an existing file name)
        Mean of distribution on tau samples (only with rician noise)
dyads: (a list of items which are an existing file name)
        Mean of PDD distribution in vector form.
thsamples: (a list of items which are an existing file name)
        theta samples, per fiber
fsamples: (a list of items which are an existing file name)
        Samples from the distribution on f anisotropy
mean_dsamples: (an existing file name)
        Mean of distribution on diffusivity d
mean_S0samples: (an existing file name)
        Mean of distribution on T2wbaseline signal intensity S0

References:

None