interfaces.fsl.preprocess

ApplyWarp

Link to code

Wraps command applywarp

Use FSL’s applywarp to apply the results of a FNIRT registration

Examples

>>> from nipype.interfaces import fsl
>>> from nipype.testing import example_data
>>> aw = fsl.ApplyWarp()
>>> aw.inputs.in_file = example_data('structural.nii')
>>> aw.inputs.ref_file = example_data('mni.nii')
>>> aw.inputs.field_file = 'my_coefficients_filed.nii' 
>>> res = aw.run() 

Inputs:

[Mandatory]
in_file: (an existing file name)
        image to be warped
        flag: --in=%s, position: 0
ref_file: (an existing file name)
        reference image
        flag: --ref=%s, position: 1

[Optional]
abswarp: (a boolean)
        treat warp field as absolute: x' = w(x)
        flag: --abs
        mutually_exclusive: relwarp
args: (a unicode string)
        Additional parameters to the command
        flag: %s
datatype: ('char' or 'short' or 'int' or 'float' or 'double')
        Force output data type [char short int float double].
        flag: --datatype=%s
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
field_file: (an existing file name)
        file containing warp field
        flag: --warp=%s
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
interp: ('nn' or 'trilinear' or 'sinc' or 'spline')
        interpolation method
        flag: --interp=%s, position: -2
mask_file: (an existing file name)
        filename for mask image (in reference space)
        flag: --mask=%s
out_file: (a file name)
        output filename
        flag: --out=%s, position: 2
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
postmat: (an existing file name)
        filename for post-transform (affine matrix)
        flag: --postmat=%s
premat: (an existing file name)
        filename for pre-transform (affine matrix)
        flag: --premat=%s
relwarp: (a boolean)
        treat warp field as relative: x' = x + w(x)
        flag: --rel, position: -1
        mutually_exclusive: abswarp
superlevel: ('a' or an integer (int or long))
        level of intermediary supersampling, a for 'automatic' or integer
        level. Default = 2
        flag: --superlevel=%s
supersample: (a boolean)
        intermediary supersampling of output, default is off
        flag: --super
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored

Outputs:

out_file: (an existing file name)
        Warped output file

References:: None

ApplyXFM

Link to code

Wraps command flirt

Currently just a light wrapper around FLIRT, with no modifications

ApplyXFM is used to apply an existing tranform to an image

Examples

>>> import nipype.interfaces.fsl as fsl
>>> from nipype.testing import example_data
>>> applyxfm = fsl.preprocess.ApplyXFM()
>>> applyxfm.inputs.in_file = example_data('structural.nii')
>>> applyxfm.inputs.in_matrix_file = example_data('trans.mat')
>>> applyxfm.inputs.out_file = 'newfile.nii'
>>> applyxfm.inputs.reference = example_data('mni.nii')
>>> applyxfm.inputs.apply_xfm = True
>>> result = applyxfm.run() 

Inputs:

[Mandatory]
in_file: (an existing file name)
        input file
        flag: -in %s, position: 0
reference: (an existing file name)
        reference file
        flag: -ref %s, position: 1

[Optional]
angle_rep: ('quaternion' or 'euler')
        representation of rotation angles
        flag: -anglerep %s
apply_isoxfm: (a float)
        as applyxfm but forces isotropic resampling
        flag: -applyisoxfm %f
        mutually_exclusive: apply_xfm
apply_xfm: (a boolean, nipype default value: True)
        apply transformation supplied by in_matrix_file or uses_qform to use
        the affine matrix stored in the reference header
        flag: -applyxfm
args: (a unicode string)
        Additional parameters to the command
        flag: %s
bbrslope: (a float)
        value of bbr slope
        flag: -bbrslope %f
bbrtype: ('signed' or 'global_abs' or 'local_abs')
        type of bbr cost function: signed [default], global_abs, local_abs
        flag: -bbrtype %s
bgvalue: (a float)
        use specified background value for points outside FOV
        flag: -setbackground %f
bins: (an integer (int or long))
        number of histogram bins
        flag: -bins %d
coarse_search: (an integer (int or long))
        coarse search delta angle
        flag: -coarsesearch %d
cost: ('mutualinfo' or 'corratio' or 'normcorr' or 'normmi' or
         'leastsq' or 'labeldiff' or 'bbr')
        cost function
        flag: -cost %s
cost_func: ('mutualinfo' or 'corratio' or 'normcorr' or 'normmi' or
         'leastsq' or 'labeldiff' or 'bbr')
        cost function
        flag: -searchcost %s
datatype: ('char' or 'short' or 'int' or 'float' or 'double')
        force output data type
        flag: -datatype %s
display_init: (a boolean)
        display initial matrix
        flag: -displayinit
dof: (an integer (int or long))
        number of transform degrees of freedom
        flag: -dof %d
echospacing: (a float)
        value of EPI echo spacing - units of seconds
        flag: -echospacing %f
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
fieldmap: (a file name)
        fieldmap image in rads/s - must be already registered to the
        reference image
        flag: -fieldmap %s
fieldmapmask: (a file name)
        mask for fieldmap image
        flag: -fieldmapmask %s
fine_search: (an integer (int or long))
        fine search delta angle
        flag: -finesearch %d
force_scaling: (a boolean)
        force rescaling even for low-res images
        flag: -forcescaling
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
in_matrix_file: (a file name)
        input 4x4 affine matrix
        flag: -init %s
in_weight: (an existing file name)
        File for input weighting volume
        flag: -inweight %s
interp: ('trilinear' or 'nearestneighbour' or 'sinc' or 'spline')
        final interpolation method used in reslicing
        flag: -interp %s
min_sampling: (a float)
        set minimum voxel dimension for sampling
        flag: -minsampling %f
no_clamp: (a boolean)
        do not use intensity clamping
        flag: -noclamp
no_resample: (a boolean)
        do not change input sampling
        flag: -noresample
no_resample_blur: (a boolean)
        do not use blurring on downsampling
        flag: -noresampblur
no_search: (a boolean)
        set all angular searches to ranges 0 to 0
        flag: -nosearch
out_file: (a file name)
        registered output file
        flag: -out %s, position: 2
out_log: (a file name)
        output log
        requires: save_log
out_matrix_file: (a file name)
        output affine matrix in 4x4 asciii format
        flag: -omat %s, position: 3
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
padding_size: (an integer (int or long))
        for applyxfm: interpolates outside image by size
        flag: -paddingsize %d
pedir: (an integer (int or long))
        phase encode direction of EPI - 1/2/3=x/y/z & -1/-2/-3=-x/-y/-z
        flag: -pedir %d
ref_weight: (an existing file name)
        File for reference weighting volume
        flag: -refweight %s
rigid2D: (a boolean)
        use 2D rigid body mode - ignores dof
        flag: -2D
save_log: (a boolean)
        save to log file
schedule: (an existing file name)
        replaces default schedule
        flag: -schedule %s
searchr_x: (a list of from 2 to 2 items which are an integer (int or
         long))
        search angles along x-axis, in degrees
        flag: -searchrx %s
searchr_y: (a list of from 2 to 2 items which are an integer (int or
         long))
        search angles along y-axis, in degrees
        flag: -searchry %s
searchr_z: (a list of from 2 to 2 items which are an integer (int or
         long))
        search angles along z-axis, in degrees
        flag: -searchrz %s
sinc_width: (an integer (int or long))
        full-width in voxels
        flag: -sincwidth %d
sinc_window: ('rectangular' or 'hanning' or 'blackman')
        sinc window
        flag: -sincwindow %s
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
uses_qform: (a boolean)
        initialize using sform or qform
        flag: -usesqform
verbose: (an integer (int or long))
        verbose mode, 0 is least
        flag: -verbose %d
wm_seg: (a file name)
        white matter segmentation volume needed by BBR cost function
        flag: -wmseg %s
wmcoords: (a file name)
        white matter boundary coordinates for BBR cost function
        flag: -wmcoords %s
wmnorms: (a file name)
        white matter boundary normals for BBR cost function
        flag: -wmnorms %s

Outputs:

out_file: (an existing file name)
        path/name of registered file (if generated)
out_log: (a file name)
        path/name of output log (if generated)
out_matrix_file: (an existing file name)
        path/name of calculated affine transform (if generated)

References:: None

BET

Link to code

Wraps command bet

Use FSL BET command for skull stripping.

For complete details, see the BET Documentation.

Examples

>>> from nipype.interfaces import fsl
>>> btr = fsl.BET()
>>> btr.inputs.in_file = 'structural.nii'
>>> btr.inputs.frac = 0.7
>>> btr.inputs.out_file = 'brain_anat.nii'
>>> btr.cmdline  
'bet structural.nii brain_anat.nii -f 0.70'
>>> res = btr.run() 

Inputs:

[Mandatory]
in_file: (an existing file name)
        input file to skull strip
        flag: %s, position: 0

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
center: (a list of at most 3 items which are an integer (int or
         long))
        center of gravity in voxels
        flag: -c %s
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
frac: (a float)
        fractional intensity threshold
        flag: -f %.2f
functional: (a boolean)
        apply to 4D fMRI data
        flag: -F
        mutually_exclusive: functional, reduce_bias, robust, padding,
         remove_eyes, surfaces, t2_guided
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
mask: (a boolean)
        create binary mask image
        flag: -m
mesh: (a boolean)
        generate a vtk mesh brain surface
        flag: -e
no_output: (a boolean)
        Don't generate segmented output
        flag: -n
out_file: (a file name)
        name of output skull stripped image
        flag: %s, position: 1
outline: (a boolean)
        create surface outline image
        flag: -o
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
padding: (a boolean)
        improve BET if FOV is very small in Z (by temporarily padding end
        slices)
        flag: -Z
        mutually_exclusive: functional, reduce_bias, robust, padding,
         remove_eyes, surfaces, t2_guided
radius: (an integer (int or long))
        head radius
        flag: -r %d
reduce_bias: (a boolean)
        bias field and neck cleanup
        flag: -B
        mutually_exclusive: functional, reduce_bias, robust, padding,
         remove_eyes, surfaces, t2_guided
remove_eyes: (a boolean)
        eye & optic nerve cleanup (can be useful in SIENA)
        flag: -S
        mutually_exclusive: functional, reduce_bias, robust, padding,
         remove_eyes, surfaces, t2_guided
robust: (a boolean)
        robust brain centre estimation (iterates BET several times)
        flag: -R
        mutually_exclusive: functional, reduce_bias, robust, padding,
         remove_eyes, surfaces, t2_guided
skull: (a boolean)
        create skull image
        flag: -s
surfaces: (a boolean)
        run bet2 and then betsurf to get additional skull and scalp surfaces
        (includes registrations)
        flag: -A
        mutually_exclusive: functional, reduce_bias, robust, padding,
         remove_eyes, surfaces, t2_guided
t2_guided: (a file name)
        as with creating surfaces, when also feeding in non-brain-extracted
        T2 (includes registrations)
        flag: -A2 %s
        mutually_exclusive: functional, reduce_bias, robust, padding,
         remove_eyes, surfaces, t2_guided
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
threshold: (a boolean)
        apply thresholding to segmented brain image and mask
        flag: -t
vertical_gradient: (a float)
        vertical gradient in fractional intensity threshold (-1, 1)
        flag: -g %.2f

Outputs:

inskull_mask_file: (a file name)
        path/name of inskull mask (if generated)
inskull_mesh_file: (a file name)
        path/name of inskull mesh outline (if generated)
mask_file: (a file name)
        path/name of binary brain mask (if generated)
meshfile: (a file name)
        path/name of vtk mesh file (if generated)
out_file: (a file name)
        path/name of skullstripped file (if generated)
outline_file: (a file name)
        path/name of outline file (if generated)
outskin_mask_file: (a file name)
        path/name of outskin mask (if generated)
outskin_mesh_file: (a file name)
        path/name of outskin mesh outline (if generated)
outskull_mask_file: (a file name)
        path/name of outskull mask (if generated)
outskull_mesh_file: (a file name)
        path/name of outskull mesh outline (if generated)
skull_mask_file: (a file name)
        path/name of skull mask (if generated)

References:: None

FAST

Link to code

Wraps command fast

Use FSL FAST for segmenting and bias correction.

For complete details, see the FAST Documentation.

Examples

>>> from nipype.interfaces import fsl
>>> fastr = fsl.FAST()
>>> fastr.inputs.in_files = 'structural.nii'
>>> fastr.inputs.out_basename = 'fast_'
>>> fastr.cmdline  
'fast -o fast_ -S 1 structural.nii'
>>> out = fastr.run()  

Inputs:

[Mandatory]
in_files: (a list of items which are an existing file name)
        image, or multi-channel set of images, to be segmented
        flag: %s, position: -1

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
bias_iters: (1 <= a long integer <= 10)
        number of main-loop iterations during bias-field removal
        flag: -I %d
bias_lowpass: (4 <= a long integer <= 40)
        bias field smoothing extent (FWHM) in mm
        flag: -l %d
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
hyper: (0.0 <= a floating point number <= 1.0)
        segmentation spatial smoothness
        flag: -H %.2f
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
img_type: (1 or 2 or 3)
        int specifying type of image: (1 = T1, 2 = T2, 3 = PD)
        flag: -t %d
init_seg_smooth: (0.0001 <= a floating point number <= 0.1)
        initial segmentation spatial smoothness (during bias field
        estimation)
        flag: -f %.3f
init_transform: (an existing file name)
        <standard2input.mat> initialise using priors
        flag: -a %s
iters_afterbias: (1 <= a long integer <= 20)
        number of main-loop iterations after bias-field removal
        flag: -O %d
manual_seg: (an existing file name)
        Filename containing intensities
        flag: -s %s
mixel_smooth: (0.0 <= a floating point number <= 1.0)
        spatial smoothness for mixeltype
        flag: -R %.2f
no_bias: (a boolean)
        do not remove bias field
        flag: -N
no_pve: (a boolean)
        turn off PVE (partial volume estimation)
        flag: --nopve
number_classes: (1 <= a long integer <= 10)
        number of tissue-type classes
        flag: -n %d
other_priors: (a list of from 3 to 3 items which are a file name)
        alternative prior images
        flag: -A %s
out_basename: (a file name)
        base name of output files
        flag: -o %s
output_biascorrected: (a boolean)
        output restored image (bias-corrected image)
        flag: -B
output_biasfield: (a boolean)
        output estimated bias field
        flag: -b
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
probability_maps: (a boolean)
        outputs individual probability maps
        flag: -p
segment_iters: (1 <= a long integer <= 50)
        number of segmentation-initialisation iterations
        flag: -W %d
segments: (a boolean)
        outputs a separate binary image for each tissue type
        flag: -g
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
use_priors: (a boolean)
        use priors throughout
        flag: -P
verbose: (a boolean)
        switch on diagnostic messages
        flag: -v

Outputs:

bias_field: (a list of items which are a file name)
mixeltype: (a file name)
        path/name of mixeltype volume file _mixeltype
partial_volume_files: (a list of items which are a file name)
partial_volume_map: (a file name)
        path/name of partial volume file _pveseg
probability_maps: (a list of items which are a file name)
restored_image: (a list of items which are a file name)
tissue_class_files: (a list of items which are a file name)
tissue_class_map: (an existing file name)
        path/name of binary segmented volume file one val for each class
        _seg

References:: None

FIRST

Link to code

Wraps command run_first_all

Use FSL’s run_first_all command to segment subcortical volumes

http://www.fmrib.ox.ac.uk/fsl/first/index.html

Examples

>>> from nipype.interfaces import fsl
>>> first = fsl.FIRST()
>>> first.inputs.in_file = 'structural.nii'
>>> first.inputs.out_file = 'segmented.nii'
>>> res = first.run() 

Inputs:

[Mandatory]
in_file: (an existing file name)
        input data file
        flag: -i %s, position: -2
out_file: (a file name, nipype default value: segmented)
        output data file
        flag: -o %s, position: -1

[Optional]
affine_file: (an existing file name)
        Affine matrix to use (e.g. img2std.mat) (does not re-run
        registration)
        flag: -a %s, position: 6
args: (a unicode string)
        Additional parameters to the command
        flag: %s
brain_extracted: (a boolean)
        Input structural image is already brain-extracted
        flag: -b, position: 2
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
list_of_specific_structures: (a list of at least 1 items which are a
         unicode string)
        Runs only on the specified structures (e.g. L_Hipp, R_HippL_Accu,
        R_Accu, L_Amyg, R_AmygL_Caud, R_Caud, L_Pall, R_PallL_Puta, R_Puta,
        L_Thal, R_Thal, BrStem
        flag: -s %s, position: 5
method: ('auto' or 'fast' or 'none', nipype default value: auto)
        Method must be one of auto, fast, none, or it can be entered using
        the 'method_as_numerical_threshold' input
        flag: -m %s, position: 4
        mutually_exclusive: method_as_numerical_threshold
method_as_numerical_threshold: (a float)
        Specify a numerical threshold value or use the 'method' input to
        choose auto, fast, or none
        flag: -m %.4f, position: 4
no_cleanup: (a boolean)
        Input structural image is already brain-extracted
        flag: -d, position: 3
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
verbose: (a boolean)
        Use verbose logging.
        flag: -v, position: 1

Outputs:

bvars: (a list of items which are an existing file name)
        bvars for each subcortical region
original_segmentations: (an existing file name)
        3D image file containing the segmented regions as integer values.
        Uses CMA labelling
segmentation_file: (an existing file name)
        4D image file containing a single volume per segmented region
vtk_surfaces: (a list of items which are an existing file name)
        VTK format meshes for each subcortical region

References:: None

FLIRT

Link to code

Wraps command flirt

Use FSL FLIRT for coregistration.

For complete details, see the FLIRT Documentation.

To print out the command line help, use:
fsl.FLIRT().inputs_help()

Examples

>>> from nipype.interfaces import fsl
>>> from nipype.testing import example_data
>>> flt = fsl.FLIRT(bins=640, cost_func='mutualinfo')
>>> flt.inputs.in_file = 'structural.nii'
>>> flt.inputs.reference = 'mni.nii'
>>> flt.inputs.output_type = "NIFTI_GZ"
>>> flt.cmdline 
'flirt -in structural.nii -ref mni.nii -out structural_flirt.nii.gz -omat structural_flirt.mat -bins 640 -searchcost mutualinfo'
>>> res = flt.run() 

Inputs:

[Mandatory]
in_file: (an existing file name)
        input file
        flag: -in %s, position: 0
reference: (an existing file name)
        reference file
        flag: -ref %s, position: 1

[Optional]
angle_rep: ('quaternion' or 'euler')
        representation of rotation angles
        flag: -anglerep %s
apply_isoxfm: (a float)
        as applyxfm but forces isotropic resampling
        flag: -applyisoxfm %f
        mutually_exclusive: apply_xfm
apply_xfm: (a boolean)
        apply transformation supplied by in_matrix_file or uses_qform to use
        the affine matrix stored in the reference header
        flag: -applyxfm
args: (a unicode string)
        Additional parameters to the command
        flag: %s
bbrslope: (a float)
        value of bbr slope
        flag: -bbrslope %f
bbrtype: ('signed' or 'global_abs' or 'local_abs')
        type of bbr cost function: signed [default], global_abs, local_abs
        flag: -bbrtype %s
bgvalue: (a float)
        use specified background value for points outside FOV
        flag: -setbackground %f
bins: (an integer (int or long))
        number of histogram bins
        flag: -bins %d
coarse_search: (an integer (int or long))
        coarse search delta angle
        flag: -coarsesearch %d
cost: ('mutualinfo' or 'corratio' or 'normcorr' or 'normmi' or
         'leastsq' or 'labeldiff' or 'bbr')
        cost function
        flag: -cost %s
cost_func: ('mutualinfo' or 'corratio' or 'normcorr' or 'normmi' or
         'leastsq' or 'labeldiff' or 'bbr')
        cost function
        flag: -searchcost %s
datatype: ('char' or 'short' or 'int' or 'float' or 'double')
        force output data type
        flag: -datatype %s
display_init: (a boolean)
        display initial matrix
        flag: -displayinit
dof: (an integer (int or long))
        number of transform degrees of freedom
        flag: -dof %d
echospacing: (a float)
        value of EPI echo spacing - units of seconds
        flag: -echospacing %f
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
fieldmap: (a file name)
        fieldmap image in rads/s - must be already registered to the
        reference image
        flag: -fieldmap %s
fieldmapmask: (a file name)
        mask for fieldmap image
        flag: -fieldmapmask %s
fine_search: (an integer (int or long))
        fine search delta angle
        flag: -finesearch %d
force_scaling: (a boolean)
        force rescaling even for low-res images
        flag: -forcescaling
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
in_matrix_file: (a file name)
        input 4x4 affine matrix
        flag: -init %s
in_weight: (an existing file name)
        File for input weighting volume
        flag: -inweight %s
interp: ('trilinear' or 'nearestneighbour' or 'sinc' or 'spline')
        final interpolation method used in reslicing
        flag: -interp %s
min_sampling: (a float)
        set minimum voxel dimension for sampling
        flag: -minsampling %f
no_clamp: (a boolean)
        do not use intensity clamping
        flag: -noclamp
no_resample: (a boolean)
        do not change input sampling
        flag: -noresample
no_resample_blur: (a boolean)
        do not use blurring on downsampling
        flag: -noresampblur
no_search: (a boolean)
        set all angular searches to ranges 0 to 0
        flag: -nosearch
out_file: (a file name)
        registered output file
        flag: -out %s, position: 2
out_log: (a file name)
        output log
        requires: save_log
out_matrix_file: (a file name)
        output affine matrix in 4x4 asciii format
        flag: -omat %s, position: 3
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
padding_size: (an integer (int or long))
        for applyxfm: interpolates outside image by size
        flag: -paddingsize %d
pedir: (an integer (int or long))
        phase encode direction of EPI - 1/2/3=x/y/z & -1/-2/-3=-x/-y/-z
        flag: -pedir %d
ref_weight: (an existing file name)
        File for reference weighting volume
        flag: -refweight %s
rigid2D: (a boolean)
        use 2D rigid body mode - ignores dof
        flag: -2D
save_log: (a boolean)
        save to log file
schedule: (an existing file name)
        replaces default schedule
        flag: -schedule %s
searchr_x: (a list of from 2 to 2 items which are an integer (int or
         long))
        search angles along x-axis, in degrees
        flag: -searchrx %s
searchr_y: (a list of from 2 to 2 items which are an integer (int or
         long))
        search angles along y-axis, in degrees
        flag: -searchry %s
searchr_z: (a list of from 2 to 2 items which are an integer (int or
         long))
        search angles along z-axis, in degrees
        flag: -searchrz %s
sinc_width: (an integer (int or long))
        full-width in voxels
        flag: -sincwidth %d
sinc_window: ('rectangular' or 'hanning' or 'blackman')
        sinc window
        flag: -sincwindow %s
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
uses_qform: (a boolean)
        initialize using sform or qform
        flag: -usesqform
verbose: (an integer (int or long))
        verbose mode, 0 is least
        flag: -verbose %d
wm_seg: (a file name)
        white matter segmentation volume needed by BBR cost function
        flag: -wmseg %s
wmcoords: (a file name)
        white matter boundary coordinates for BBR cost function
        flag: -wmcoords %s
wmnorms: (a file name)
        white matter boundary normals for BBR cost function
        flag: -wmnorms %s

Outputs:

out_file: (an existing file name)
        path/name of registered file (if generated)
out_log: (a file name)
        path/name of output log (if generated)
out_matrix_file: (an existing file name)
        path/name of calculated affine transform (if generated)

References:: None

FNIRT

Link to code

Wraps command fnirt

Use FSL FNIRT for non-linear registration.

For complete details, see the FNIRT Documentation.

Examples

>>> from nipype.interfaces import fsl
>>> from nipype.testing import example_data
>>> fnt = fsl.FNIRT(affine_file=example_data('trans.mat'))
>>> res = fnt.run(ref_file=example_data('mni.nii', in_file=example_data('structural.nii')) 

T1 -> Mni153

>>> from nipype.interfaces import fsl
>>> fnirt_mprage = fsl.FNIRT()
>>> fnirt_mprage.inputs.in_fwhm = [8, 4, 2, 2]
>>> fnirt_mprage.inputs.subsampling_scheme = [4, 2, 1, 1]

Specify the resolution of the warps

>>> fnirt_mprage.inputs.warp_resolution = (6, 6, 6)
>>> res = fnirt_mprage.run(in_file='structural.nii', ref_file='mni.nii', warped_file='warped.nii', fieldcoeff_file='fieldcoeff.nii')

We can check the command line and confirm that it’s what we expect.

>>> fnirt_mprage.cmdline  
'fnirt --cout=fieldcoeff.nii --in=structural.nii --infwhm=8,4,2,2 --ref=mni.nii --subsamp=4,2,1,1 --warpres=6,6,6 --iout=warped.nii'

Inputs:

[Mandatory]
in_file: (an existing file name)
        name of input image
        flag: --in=%s
ref_file: (an existing file name)
        name of reference image
        flag: --ref=%s

[Optional]
affine_file: (an existing file name)
        name of file containing affine transform
        flag: --aff=%s
apply_inmask: (a list of items which are 0 or 1)
        list of iterations to use input mask on (1 to use, 0 to skip)
        flag: --applyinmask=%s
        mutually_exclusive: skip_inmask
apply_intensity_mapping: (a list of items which are 0 or 1)
        List of subsampling levels to apply intensity mapping for (0 to
        skip, 1 to apply)
        flag: --estint=%s
        mutually_exclusive: skip_intensity_mapping
apply_refmask: (a list of items which are 0 or 1)
        list of iterations to use reference mask on (1 to use, 0 to skip)
        flag: --applyrefmask=%s
        mutually_exclusive: skip_refmask
args: (a unicode string)
        Additional parameters to the command
        flag: %s
bias_regularization_lambda: (a float)
        Weight of regularisation for bias-field, default 10000
        flag: --biaslambda=%f
biasfield_resolution: (a tuple of the form: (an integer (int or
         long), an integer (int or long), an integer (int or long)))
        Resolution (in mm) of bias-field modelling local intensities,
        default 50, 50, 50
        flag: --biasres=%d,%d,%d
config_file: ('T1_2_MNI152_2mm' or 'FA_2_FMRIB58_1mm' or an existing
         file name)
        Name of config file specifying command line arguments
        flag: --config=%s
derive_from_ref: (a boolean)
        If true, ref image is used to calculate derivatives. Default false
        flag: --refderiv
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
field_file: (a boolean or a file name)
        name of output file with field or true
        flag: --fout=%s
fieldcoeff_file: (a boolean or a file name)
        name of output file with field coefficients or true
        flag: --cout=%s
hessian_precision: ('double' or 'float')
        Precision for representing Hessian, double or float. Default double
        flag: --numprec=%s
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
in_fwhm: (a list of items which are an integer (int or long))
        FWHM (in mm) of gaussian smoothing kernel for input volume, default
        [6, 4, 2, 2]
        flag: --infwhm=%s
in_intensitymap_file: (a list of from 1 to 2 items which are an
         existing file name)
        name of file/files containing initial intensity mapping usually
        generated by previous fnirt run
        flag: --intin=%s
inmask_file: (an existing file name)
        name of file with mask in input image space
        flag: --inmask=%s
inmask_val: (a float)
        Value to mask out in --in image. Default =0.0
        flag: --impinval=%f
intensity_mapping_model: ('none' or 'global_linear' or
         'global_non_linearlocal_linear' or 'global_non_linear_with_bias' or
         'local_non_linear')
        Model for intensity-mapping
        flag: --intmod=%s
intensity_mapping_order: (an integer (int or long))
        Order of poynomial for mapping intensities, default 5
        flag: --intorder=%d
inwarp_file: (an existing file name)
        name of file containing initial non-linear warps
        flag: --inwarp=%s
jacobian_file: (a boolean or a file name)
        name of file for writing out the Jacobian of the field (for
        diagnostic or VBM purposes)
        flag: --jout=%s
jacobian_range: (a tuple of the form: (a float, a float))
        Allowed range of Jacobian determinants, default 0.01, 100.0
        flag: --jacrange=%f,%f
log_file: (a file name)
        Name of log-file
        flag: --logout=%s
max_nonlin_iter: (a list of items which are an integer (int or long))
        Max # of non-linear iterations list, default [5, 5, 5, 5]
        flag: --miter=%s
modulatedref_file: (a boolean or a file name)
        name of file for writing out intensity modulated --ref (for
        diagnostic purposes)
        flag: --refout=%s
out_intensitymap_file: (a boolean or a file name)
        name of files for writing information pertaining to intensity
        mapping
        flag: --intout=%s
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
ref_fwhm: (a list of items which are an integer (int or long))
        FWHM (in mm) of gaussian smoothing kernel for ref volume, default
        [4, 2, 0, 0]
        flag: --reffwhm=%s
refmask_file: (an existing file name)
        name of file with mask in reference space
        flag: --refmask=%s
refmask_val: (a float)
        Value to mask out in --ref image. Default =0.0
        flag: --imprefval=%f
regularization_lambda: (a list of items which are a float)
        Weight of regularisation, default depending on --ssqlambda and
        --regmod switches. See user documetation.
        flag: --lambda=%s
regularization_model: ('membrane_energy' or 'bending_energy')
        Model for regularisation of warp-field [membrane_energy
        bending_energy], default bending_energy
        flag: --regmod=%s
skip_implicit_in_masking: (a boolean)
        skip implicit masking based on value in --in image. Default = 0
        flag: --impinm=0
skip_implicit_ref_masking: (a boolean)
        skip implicit masking based on value in --ref image. Default = 0
        flag: --imprefm=0
skip_inmask: (a boolean)
        skip specified inmask if set, default false
        flag: --applyinmask=0
        mutually_exclusive: apply_inmask
skip_intensity_mapping: (a boolean)
        Skip estimate intensity-mapping default false
        flag: --estint=0
        mutually_exclusive: apply_intensity_mapping
skip_lambda_ssq: (a boolean)
        If true, lambda is not weighted by current ssq, default false
        flag: --ssqlambda=0
skip_refmask: (a boolean)
        Skip specified refmask if set, default false
        flag: --applyrefmask=0
        mutually_exclusive: apply_refmask
spline_order: (an integer (int or long))
        Order of spline, 2->Qadratic spline, 3->Cubic spline. Default=3
        flag: --splineorder=%d
subsampling_scheme: (a list of items which are an integer (int or
         long))
        sub-sampling scheme, list, default [4, 2, 1, 1]
        flag: --subsamp=%s
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
warp_resolution: (a tuple of the form: (an integer (int or long), an
         integer (int or long), an integer (int or long)))
        (approximate) resolution (in mm) of warp basis in x-, y- and
        z-direction, default 10, 10, 10
        flag: --warpres=%d,%d,%d
warped_file: (a file name)
        name of output image
        flag: --iout=%s

Outputs:

field_file: (a file name)
        file with warp field
fieldcoeff_file: (an existing file name)
        file with field coefficients
jacobian_file: (a file name)
        file containing Jacobian of the field
log_file: (a file name)
        Name of log-file
modulatedref_file: (a file name)
        file containing intensity modulated --ref
out_intensitymap_file: (a list of from 2 to 2 items which are a file
         name)
        files containing info pertaining to intensity mapping
warped_file: (an existing file name)
        warped image

References:: None

FUGUE

Link to code

Wraps command fugue

FUGUE is, most generally, a set of tools for EPI distortion correction.

Distortions may be corrected for
  1. improving registration with non-distorted images (e.g. structurals), or
  2. dealing with motion-dependent changes.

FUGUE is designed to deal only with the first case - improving registration.

Examples

Unwarping an input image (shift map is known)

>>> from nipype.interfaces.fsl.preprocess import FUGUE
>>> fugue = FUGUE()
>>> fugue.inputs.in_file = 'epi.nii'
>>> fugue.inputs.mask_file = 'epi_mask.nii'
>>> fugue.inputs.shift_in_file = 'vsm.nii'  # Previously computed with fugue as well
>>> fugue.inputs.unwarp_direction = 'y'
>>> fugue.inputs.output_type = "NIFTI_GZ"
>>> fugue.cmdline 
'fugue --in=epi.nii --mask=epi_mask.nii --loadshift=vsm.nii --unwarpdir=y --unwarp=epi_unwarped.nii.gz'
>>> fugue.run() 

Warping an input image (shift map is known)

>>> from nipype.interfaces.fsl.preprocess import FUGUE
>>> fugue = FUGUE()
>>> fugue.inputs.in_file = 'epi.nii'
>>> fugue.inputs.forward_warping = True
>>> fugue.inputs.mask_file = 'epi_mask.nii'
>>> fugue.inputs.shift_in_file = 'vsm.nii'  # Previously computed with fugue as well
>>> fugue.inputs.unwarp_direction = 'y'
>>> fugue.inputs.output_type = "NIFTI_GZ"
>>> fugue.cmdline 
'fugue --in=epi.nii --mask=epi_mask.nii --loadshift=vsm.nii --unwarpdir=y --warp=epi_warped.nii.gz'
>>> fugue.run() 

Computing the vsm (unwrapped phase map is known)

>>> from nipype.interfaces.fsl.preprocess import FUGUE
>>> fugue = FUGUE()
>>> fugue.inputs.phasemap_in_file = 'epi_phasediff.nii'
>>> fugue.inputs.mask_file = 'epi_mask.nii'
>>> fugue.inputs.dwell_to_asym_ratio = (0.77e-3 * 3) / 2.46e-3
>>> fugue.inputs.unwarp_direction = 'y'
>>> fugue.inputs.save_shift = True
>>> fugue.inputs.output_type = "NIFTI_GZ"
>>> fugue.cmdline 
'fugue --dwelltoasym=0.9390243902 --mask=epi_mask.nii --phasemap=epi_phasediff.nii --saveshift=epi_phasediff_vsm.nii.gz --unwarpdir=y'
>>> fugue.run() 

Inputs:

[Mandatory]

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
asym_se_time: (a float)
        set the fieldmap asymmetric spin echo time (sec)
        flag: --asym=%.10f
despike_2dfilter: (a boolean)
        apply a 2D de-spiking filter
        flag: --despike
despike_threshold: (a float)
        specify the threshold for de-spiking (default=3.0)
        flag: --despikethreshold=%s
dwell_time: (a float)
        set the EPI dwell time per phase-encode line - same as echo spacing
        - (sec)
        flag: --dwell=%.10f
dwell_to_asym_ratio: (a float)
        set the dwell to asym time ratio
        flag: --dwelltoasym=%.10f
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
fmap_in_file: (an existing file name)
        filename for loading fieldmap (rad/s)
        flag: --loadfmap=%s
fmap_out_file: (a file name)
        filename for saving fieldmap (rad/s)
        flag: --savefmap=%s
forward_warping: (a boolean, nipype default value: False)
        apply forward warping instead of unwarping
fourier_order: (an integer (int or long))
        apply Fourier (sinusoidal) fitting of order N
        flag: --fourier=%d
icorr: (a boolean)
        apply intensity correction to unwarping (pixel shift method only)
        flag: --icorr
        requires: shift_in_file
icorr_only: (a boolean)
        apply intensity correction only
        flag: --icorronly
        requires: unwarped_file
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
in_file: (an existing file name)
        filename of input volume
        flag: --in=%s
mask_file: (an existing file name)
        filename for loading valid mask
        flag: --mask=%s
median_2dfilter: (a boolean)
        apply 2D median filtering
        flag: --median
no_extend: (a boolean)
        do not apply rigid-body extrapolation to the fieldmap
        flag: --noextend
no_gap_fill: (a boolean)
        do not apply gap-filling measure to the fieldmap
        flag: --nofill
nokspace: (a boolean)
        do not use k-space forward warping
        flag: --nokspace
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
pava: (a boolean)
        apply monotonic enforcement via PAVA
        flag: --pava
phase_conjugate: (a boolean)
        apply phase conjugate method of unwarping
        flag: --phaseconj
phasemap_in_file: (an existing file name)
        filename for input phase image
        flag: --phasemap=%s
poly_order: (an integer (int or long))
        apply polynomial fitting of order N
        flag: --poly=%d
save_fmap: (a boolean)
        write field map volume
        mutually_exclusive: save_unmasked_fmap
save_shift: (a boolean)
        write pixel shift volume
        mutually_exclusive: save_unmasked_shift
save_unmasked_fmap: (a boolean)
        saves the unmasked fieldmap when using --savefmap
        flag: --unmaskfmap
        mutually_exclusive: save_fmap
save_unmasked_shift: (a boolean)
        saves the unmasked shiftmap when using --saveshift
        flag: --unmaskshift
        mutually_exclusive: save_shift
shift_in_file: (an existing file name)
        filename for reading pixel shift volume
        flag: --loadshift=%s
shift_out_file: (a file name)
        filename for saving pixel shift volume
        flag: --saveshift=%s
smooth2d: (a float)
        apply 2D Gaussian smoothing of sigma N (in mm)
        flag: --smooth2=%.2f
smooth3d: (a float)
        apply 3D Gaussian smoothing of sigma N (in mm)
        flag: --smooth3=%.2f
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
unwarp_direction: ('x' or 'y' or 'z' or 'x-' or 'y-' or 'z-')
        specifies direction of warping (default y)
        flag: --unwarpdir=%s
unwarped_file: (a file name)
        apply unwarping and save as filename
        flag: --unwarp=%s
        mutually_exclusive: warped_file
        requires: in_file
warped_file: (a file name)
        apply forward warping and save as filename
        flag: --warp=%s
        mutually_exclusive: unwarped_file
        requires: in_file

Outputs:

fmap_out_file: (a file name)
        fieldmap file
shift_out_file: (a file name)
        voxel shift map file
unwarped_file: (a file name)
        unwarped file
warped_file: (a file name)
        forward warped file

References:: None

MCFLIRT

Link to code

Wraps command mcflirt

Use FSL MCFLIRT to do within-modality motion correction.

For complete details, see the MCFLIRT Documentation.

Examples

>>> from nipype.interfaces import fsl
>>> mcflt = fsl.MCFLIRT()
>>> mcflt.inputs.in_file = 'functional.nii'
>>> mcflt.inputs.cost = 'mutualinfo'
>>> mcflt.inputs.out_file = 'moco.nii'
>>> mcflt.cmdline 
'mcflirt -in functional.nii -cost mutualinfo -out moco.nii'
>>> res = mcflt.run()  

Inputs:

[Mandatory]
in_file: (an existing file name)
        timeseries to motion-correct
        flag: -in %s, position: 0

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
bins: (an integer (int or long))
        number of histogram bins
        flag: -bins %d
cost: ('mutualinfo' or 'woods' or 'corratio' or 'normcorr' or
         'normmi' or 'leastsquares')
        cost function to optimize
        flag: -cost %s
dof: (an integer (int or long))
        degrees of freedom for the transformation
        flag: -dof %d
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
init: (an existing file name)
        inital transformation matrix
        flag: -init %s
interpolation: ('spline' or 'nn' or 'sinc')
        interpolation method for transformation
        flag: -%s_final
mean_vol: (a boolean)
        register to mean volume
        flag: -meanvol
out_file: (a file name)
        file to write
        flag: -out %s
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
ref_file: (an existing file name)
        target image for motion correction
        flag: -reffile %s
ref_vol: (an integer (int or long))
        volume to align frames to
        flag: -refvol %d
rotation: (an integer (int or long))
        scaling factor for rotation tolerances
        flag: -rotation %d
save_mats: (a boolean)
        save transformation matrices
        flag: -mats
save_plots: (a boolean)
        save transformation parameters
        flag: -plots
save_rms: (a boolean)
        save rms displacement parameters
        flag: -rmsabs -rmsrel
scaling: (a float)
        scaling factor to use
        flag: -scaling %.2f
smooth: (a float)
        smoothing factor for the cost function
        flag: -smooth %.2f
stages: (an integer (int or long))
        stages (if 4, perform final search with sinc interpolation
        flag: -stages %d
stats_imgs: (a boolean)
        produce variance and std. dev. images
        flag: -stats
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
use_contour: (a boolean)
        run search on contour images
        flag: -edge
use_gradient: (a boolean)
        run search on gradient images
        flag: -gdt

Outputs:

mat_file: (a list of items which are an existing file name)
        transformation matrices
mean_img: (an existing file name)
        mean timeseries image (if mean_vol=True)
out_file: (an existing file name)
        motion-corrected timeseries
par_file: (an existing file name)
        text-file with motion parameters
rms_files: (a list of items which are an existing file name)
        absolute and relative displacement parameters
std_img: (an existing file name)
        standard deviation image
variance_img: (an existing file name)
        variance image

References:: None

PRELUDE

Link to code

Wraps command prelude

Use FSL prelude to do phase unwrapping

Examples

Please insert examples for use of this command

Inputs:

[Mandatory]
complex_phase_file: (an existing file name)
        complex phase input volume
        flag: --complex=%s
        mutually_exclusive: magnitude_file, phase_file
magnitude_file: (an existing file name)
        file containing magnitude image
        flag: --abs=%s
        mutually_exclusive: complex_phase_file
phase_file: (an existing file name)
        raw phase file
        flag: --phase=%s
        mutually_exclusive: complex_phase_file

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
end: (an integer (int or long))
        final image number to process (default Inf)
        flag: --end=%d
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
label_file: (a file name)
        saving the area labels output
        flag: --labels=%s
labelprocess2d: (a boolean)
        does label processing in 2D (slice at a time)
        flag: --labelslices
mask_file: (an existing file name)
        filename of mask input volume
        flag: --mask=%s
num_partitions: (an integer (int or long))
        number of phase partitions to use
        flag: --numphasesplit=%d
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
process2d: (a boolean)
        does all processing in 2D (slice at a time)
        flag: --slices
        mutually_exclusive: labelprocess2d
process3d: (a boolean)
        forces all processing to be full 3D
        flag: --force3D
        mutually_exclusive: labelprocess2d, process2d
rawphase_file: (a file name)
        saving the raw phase output
        flag: --rawphase=%s
removeramps: (a boolean)
        remove phase ramps during unwrapping
        flag: --removeramps
savemask_file: (a file name)
        saving the mask volume
        flag: --savemask=%s
start: (an integer (int or long))
        first image number to process (default 0)
        flag: --start=%d
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
threshold: (a float)
        intensity threshold for masking
        flag: --thresh=%.10f
unwrapped_phase_file: (a file name)
        file containing unwrapepd phase
        flag: --unwrap=%s

Outputs:

unwrapped_phase_file: (an existing file name)
        unwrapped phase file

References:: None

SUSAN

Link to code

Wraps command susan

use FSL SUSAN to perform smoothing

For complete details, see the SUSAN Documentation.

Examples

>>> from nipype.interfaces import fsl
>>> from nipype.testing import example_data
>>> anatfile  
anatomical.nii  
>>> sus = fsl.SUSAN()
>>> sus.inputs.in_file = example_data('structural.nii')
>>> sus.inputs.brightness_threshold = 2000.0
>>> sus.inputs.fwhm = 8.0
>>> result = sus.run()  

Inputs:

[Mandatory]
brightness_threshold: (a float)
        brightness threshold and should be greater than noise level and less
        than contrast of edges to be preserved.
        flag: %.10f, position: 2
fwhm: (a float)
        fwhm of smoothing, in mm, gets converted using sqrt(8*log(2))
        flag: %.10f, position: 3
in_file: (an existing file name)
        filename of input timeseries
        flag: %s, position: 1

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
dimension: (3 or 2, nipype default value: 3)
        within-plane (2) or fully 3D (3)
        flag: %d, position: 4
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
out_file: (a file name)
        output file name
        flag: %s, position: -1
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
usans: (a list of at most 2 items which are a tuple of the form: (an
         existing file name, a float), nipype default value: [])
        determines whether the smoothing area (USAN) is to be found from
        secondary images (0, 1 or 2). A negative value for any brightness
        threshold will auto-set the threshold at 10% of the robust range
use_median: (1 or 0, nipype default value: 1)
        whether to use a local median filter in the cases where single-point
        noise is detected
        flag: %d, position: 5

Outputs:

smoothed_file: (an existing file name)
        smoothed output file

References:: None

SliceTimer

Link to code

Wraps command slicetimer

use FSL slicetimer to perform slice timing correction.

Examples

>>> from nipype.interfaces import fsl
>>> from nipype.testing import example_data
>>> st = fsl.SliceTimer()
>>> st.inputs.in_file = example_data('functional.nii')
>>> st.inputs.interleaved = True
>>> result = st.run() 

Inputs:

[Mandatory]
in_file: (an existing file name)
        filename of input timeseries
        flag: --in=%s, position: 0

[Optional]
args: (a unicode string)
        Additional parameters to the command
        flag: %s
custom_order: (an existing file name)
        filename of single-column custom interleave order file (first slice
        is referred to as 1 not 0)
        flag: --ocustom=%s
custom_timings: (an existing file name)
        slice timings, in fractions of TR, range 0:1 (default is 0.5 = no
        shift)
        flag: --tcustom=%s
environ: (a dictionary with keys which are a bytes or None or a value
         of class 'str' and with values which are a bytes or None or a value
         of class 'str', nipype default value: {})
        Environment variables
global_shift: (a float)
        shift in fraction of TR, range 0:1 (default is 0.5 = no shift)
        flag: --tglobal
ignore_exception: (a boolean, nipype default value: False)
        Print an error message instead of throwing an exception in case the
        interface fails to run
index_dir: (a boolean)
        slice indexing from top to bottom
        flag: --down
interleaved: (a boolean)
        use interleaved acquisition
        flag: --odd
out_file: (a file name)
        filename of output timeseries
        flag: --out=%s
output_type: ('NIFTI_PAIR_GZ' or 'NIFTI_PAIR' or 'NIFTI_GZ' or
         'NIFTI')
        FSL output type
slice_direction: (1 or 2 or 3)
        direction of slice acquisition (x=1, y=2, z=3) - default is z
        flag: --direction=%d
terminal_output: ('stream' or 'allatonce' or 'file' or 'none')
        Control terminal output: `stream` - displays to terminal immediately
        (default), `allatonce` - waits till command is finished to display
        output, `file` - writes output to file, `none` - output is ignored
time_repetition: (a float)
        Specify TR of data - default is 3s
        flag: --repeat=%f

Outputs:

slice_time_corrected_file: (an existing file name)
        slice time corrected file

References:: None