
nipype Documentation
Release 0.11.0

Neuroimaging in Python team

September 15, 2015, 17:26 PDT

Contents

1 User Guide 3
1.1 Download and install . 3
1.2 Running Nipype in a VM . 5
1.3 Tutorial : Interfaces . 5
1.4 Interface caching . 8
1.5 Tutorial : Workflows . 12
1.6 Using Nipype Plugins . 26
1.7 Configuration File . 30
1.8 Debugging Nipype Workflows . 32
1.9 DataGrabber and DataSink explained . 33
1.10 The SelectFiles Interfaces . 36
1.11 The Function Interface . 37
1.12 MapNode, iterfield, and iterables explained . 39
1.13 JoinNode, synchronize and itersource . 43
1.14 Model Specification for First Level fMRI Analysis . 47
1.15 Saving Workflows and Nodes to a file (experimental) . 49
1.16 Using SPM with MATLAB Common Runtime . 50
1.17 Using MIPAV, JIST, and CBS Tools . 51
1.18 Running Nipype Interfaces from the command line (nipype_cmd) 51

2 Changes in Nipype 53
2.1 Release 0.11.0 (September 15, 2015) . 53
2.2 Release 0.10.0 (October 10, 2014) . 54
2.3 Release 0.9.2 (January 31, 2014) . 55
2.4 Release 0.9.1 (December 25, 2013) . 55
2.5 Release 0.9.0 (December 20, 2013) . 55
2.6 Release 0.8.0 (May 8, 2013) . 57
2.7 Release 0.7.0 (Dec 18, 2012) . 57
2.8 Release 0.6.0 (Jun 30, 2012) . 57
2.9 Release 0.5.3 (Mar 23, 2012) . 57
2.10 Release 0.5.2 (Mar 14, 2012) . 58
2.11 Release 0.5 (Mar 10, 2012) . 58
2.12 Release 0.4.1 (Jun 16, 2011) . 59
2.13 Release 0.4 (Jun 11, 2011) . 59
2.14 Release 0.3.4 (Jan 12, 2011) . 60
2.15 Release 0.3.3 (Sep 16, 2010) . 60
2.16 Release 0.3.2 (Aug 03, 2010) . 61
2.17 Release 0.3.1 (Jul 29, 2010) . 61

i

2.18 Release 0.3 (Jul 27, 2010) . 61

3 API 63

4 Developer Guide 65
4.1 Interface Specifications . 65
4.2 How to wrap a command line tool . 72
4.3 How to wrap a MATLAB script . 75
4.4 How to wrap a Python script . 77
4.5 Working with nipype source code . 77
4.6 Architecture (discussions from 2009) . 87
4.7 W3C PROV support . 91
4.8 Software using Nipype . 91

ii

nipype Documentation, Release 0.11.0

Previous versions: 0.10.0 0.9.2

Guides
• User

Contents 1

http://nipy.org/nipype/0.10.0
http://nipy.org/nipype/0.9.2

nipype Documentation, Release 0.11.0

2 Contents

CHAPTER 1

User Guide

Release 0.11.0
Date September 15, 2015, 17:26 PDT

1.1 Download and install

This page covers the necessary steps to install Nipype.

1.1.1 Download
Release 0.10.0: [zip tar.gz]
Development: [zip tar.gz]
Prior downloads
To check out the latest development version:

git clone git://github.com/nipy/nipype.git

1.1.2 Install
The installation process is similar to other Python packages.
If you already have a Python environment setup that has the dependencies listed below, you can do:

easy_install nipype

or:

pip install nipype

Debian and Ubuntu

Add the NeuroDebian repository and install the python-nipype package using apt-get or your favorite
package manager.

Mac OS X

The easiest way to get nipype running on Mac OS X is to install Anaconda or Canopy and then add nibabel and
nipype by executing:

easy_install nibabel
easy_install nipype

From source

If you downloaded the source distribution named something like nipype-x.y.tar.gz, then unpack the
tarball, change into the nipype-x.y directory and install nipype using:

3

https://github.com/nipy/nipype/archive/0.10.0.zip
https://github.com/nipy/nipype/archive/0.10.0.tar.gz
http://github.com/nipy/nipype/zipball/master
http://github.com/nipy/nipype/tarball/master
http://github.com/nipy/nipype/tags
http://neuro.debian.org
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/

nipype Documentation, Release 0.11.0

python setup.py install

Note: Depending on permissions you may need to use sudo.

1.1.3 Testing the install
The best way to test the install is to run the test suite. If you have nose installed, then do the following:

python -c "import nipype; nipype.test()"

you can also test with nosetests:

nosetests --with-doctest /software/nipy-repo/masternipype/nipype
--exclude=external --exclude=testing

All tests should pass (unless you’re missing a dependency). If SUBJECTS_DIR variable is not set some
FreeSurfer related tests will fail. If any tests fail, please report them on our bug tracker.
On Debian systems, set the following environment variable before running tests:

export MATLABCMD=$pathtomatlabdir/bin/$platform/MATLAB

where, $pathtomatlabdir is the path to your matlab installation and $platform is the directory referring to x86 or
x64 installations (typically glnxa64 on 64-bit installations).

Avoiding any MATLAB calls from testing

On unix systems, set an empty environment variable:

export NIPYPE_NO_MATLAB=

This will skip any tests that require matlab.

1.1.4 Dependencies
Below is a list of required dependencies, along with additional software recommendations.

Must Have

Python 2.7
Nibabel 1.0 - 1.4 Neuroimaging file i/o library
NetworkX 1.0 - 1.8 Python package for working with complex networks.
NumPy 1.3 - 1.7
SciPy 0.7 - 0.12 Numpy and Scipy are high-level, optimized scientific computing libraries.
Enthought Traits 4.0.0 - 4.3.0
Dateutil 1.5 -

Note: Full distributions such as Anaconda or Canopy provide the above packages, except Nibabel.

Strong Recommendations

IPython 0.10.2 - 1.0.0 Interactive python environment. This is necessary for some parallel components of the
pipeline engine.

Matplotlib 1.0 - 1.2 Plotting library
RDFLib 4.1 RDFLibrary required for provenance export as RDF
Sphinx 1.1 Required for building the documentation
Graphviz Required for building the documentation

Interface Dependencies

These are the software packages that nipype.interfaces wraps:

4 Chapter 1. User Guide

http://somethingaboutorange.com/mrl/projects/nose
http://github.com/nipy/nipype/issues
http://www.python.org
http://nipy.org/nibabel/
http://networkx.lanl.gov/
http://www.scipy.org/NumPy
http://www.scipy.org
http://www.enthought.com
http://code.enthought.com/projects/traits/
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/
http://nipy.org/nibabel/
http://ipython.scipy.org
http://matplotlib.sourceforge.net
http://rdflib.readthedocs.org/en/latest/
http://sphinx.pocoo.org/
http://www.graphviz.org/

nipype Documentation, Release 0.11.0

FSL 4.1.0 or later
matlab 2008a or later
SPM SPM5/8
FreeSurfer FreeSurfer version 4 and higher
AFNI 2009_12_31_1431 or later
Slicer 3.6 or later
Nipy 0.1.2+20110404 or later
Nitime (optional)
Camino
Camino2Trackvis
ConnectomeViewer

1.2 Running Nipype in a VM

Tip: Creating the Vagrant VM as described below requires an active internet connection.

Container technologies (Vagrant, Docker) allow creating and manipulating lightweight virtual environments.
The Nipype source now contains a Vagrantfile to launch a Vagrant VM.
Requirements:

• Vagrant
• Virtualbox

After you have installed Vagrant and Virtualbox, you simply need to download the latest Nipype source and
unzip/tar/compress it. Go into your terminal and switch to the nipype source directory. Make sure the Vagrantfile
is in the directory. Now you can execute:

vagrant up

This will launch and provision the virtual machine.
The default virtual machine is built using Ubuntu Precise 64, linked to the NeuroDebian source repo and contains
a 2 node Grid Engine for cluster execution.
The machine has a default IP address of 192.168.100.20 . From the vagrant startup directory you can log into
the machine using:

vagrant ssh

Now you can install your favorite software using:

sudo apt-get install fsl afni

Also note that the directory in which you call vagrant up will be mounted under /vagrant inside the virtual
machine. You can also copy the Vagrantfile or modify it in order to mount a different directory/directories.
Please read through Vagrant documentation on other features. The python environment is built using a mini-
conda distribution. Hence conda can be used to do your python package management inside the VM.

1.3 Tutorial : Interfaces

1.3.1 Specifying options
The nipype interface modules provide a Python interface to external packages like FSL and SPM. Within the
module are a series of Python classes which wrap specific package functionality. For example, in the fsl module,
the class nipype.interfaces.fsl.Bet wraps the bet command-line tool. Using the command-line
tool, one would specify options using flags like -o, -m, -f <f>, etc... However, in nipype, options are
assigned to Python attributes and can be specified in the following ways:
Options can be assigned when you first create an interface object:

1.2. Running Nipype in a VM 5

http://www.fmrib.ox.ac.uk/fsl
http://www.mathworks.com
http://www.fil.ion.ucl.ac.uk/spm
http://surfer.nmr.mgh.harvard.edu
http://afni.nimh.nih.gov/afni
http://slicer.org
http://nipy.org
http://nipy.org/nitime/
http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/pmwiki.php
http://camino-trackvis.sourceforge.net/
http://www.connectomeviewer.org/viewer/
http://www.vagrantup.com/
http://www.docker.io/
http://nipy.org/nipype/
http://www.vagrantup.com/
http://www.vagrantup.com/
https://www.virtualbox.org/
http://neuro.debian.net/
http://www.vagrantup.com/
http://repo.continuum.io/miniconda/
http://repo.continuum.io/miniconda/
http://www.fmrib.ox.ac.uk/fsl
http://www.fil.ion.ucl.ac.uk/spm

nipype Documentation, Release 0.11.0

import nipype.interfaces.fsl as fsl
mybet = fsl.BET(in_file='foo.nii', out_file='bar.nii')
result = mybet.run()

Options can be assigned through the inputs attribute:

import nipype.interfaces.fsl as fsl
mybet = fsl.BET()
mybet.inputs.in_file = 'foo.nii'
mybet.inputs.out_file = 'bar.nii'
result = mybet.run()

Options can be assigned when calling the run method:

import nipype.interfaces.fsl as fsl
mybet = fsl.BET()
result = mybet.run(in_file='foo.nii', out_file='bar.nii', frac=0.5)

1.3.2 Getting Help
In IPython you can view the docstrings which provide some basic documentation and examples.

In [2]: fsl.FAST?
Type: type
Base Class: <type 'type'>
String Form: <class 'nipype.interfaces.fsl.preprocess.FAST'>
Namespace: Interactive
File: /Users/satra/sp/nipype/interfaces/fsl/preprocess.py
Docstring:

Use FSL FAST for segmenting and bias correction.

For complete details, see the `FAST Documentation.
<http://www.fmrib.ox.ac.uk/fsl/fast4/index.html>`_

Examples

>>> from nipype.interfaces import fsl
>>> from nipype.testing import anatfile

Assign options through the ``inputs`` attribute:

>>> fastr = fsl.FAST()
>>> fastr.inputs.in_files = anatfile
>>> out = fastr.run() #doctest: +SKIP

Constructor information:
Definition: fsl.FAST(self, **inputs)

In [5]: spm.Realign?
Type: type
Base Class: <type 'type'>
String Form: <class 'nipype.interfaces.spm.preprocess.Realign'>
Namespace: Interactive
File: /Users/satra/sp/nipype/interfaces/spm/preprocess.py
Docstring:

Use spm_realign for estimating within modality rigid body alignment

http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf#page=25

Examples

6 Chapter 1. User Guide

http://ipython.scipy.org

nipype Documentation, Release 0.11.0

>>> import nipype.interfaces.spm as spm
>>> realign = spm.Realign()
>>> realign.inputs.in_files = 'functional.nii'
>>> realign.inputs.register_to_mean = True
>>> realign.run() # doctest: +SKIP

Constructor information:
Definition: spm.Realign(self, **inputs)

All of the nipype.interfaces classes have an help method which provides information on each of the options
one can assign.

In [6]: fsl.BET.help()
Inputs

Mandatory:
in_file: input file to skull strip

Optional:
args: Additional parameters to the command
center: center of gravity in voxels
environ: Environment variables (default={})
frac: fractional intensity threshold
functional: apply to 4D fMRI data
mutually exclusive: functional, reduce_bias

mask: create binary mask image
mesh: generate a vtk mesh brain surface
no_output: Don't generate segmented output
out_file: name of output skull stripped image
outline: create surface outline image
output_type: FSL output type
radius: head radius
reduce_bias: bias field and neck cleanup
mutually exclusive: functional, reduce_bias

skull: create skull image
threshold: apply thresholding to segmented brain image and mask
vertical_gradient: vertical gradient in fractional intensity threshold (-1, 1)

Outputs

mask_file: path/name of binary brain mask (if generated)
meshfile: path/name of vtk mesh file (if generated)
out_file: path/name of skullstripped file
outline_file: path/name of outline file (if generated)

In [7]: spm.Realign.help()
Inputs

Mandatory:
in_files: list of filenames to realign

Optional:
fwhm: gaussian smoothing kernel width
interp: degree of b-spline used for interpolation
jobtype: one of: estimate, write, estwrite (default=estwrite)

1.3. Tutorial : Interfaces 7

nipype Documentation, Release 0.11.0

matlab_cmd: None
mfile: Run m-code using m-file (default=True)
paths: Paths to add to matlabpath
quality: 0.1 = fast, 1.0 = precise
register_to_mean: Indicate whether realignment is done to the mean image
separation: sampling separation in mm
weight_img: filename of weighting image
wrap: Check if interpolation should wrap in [x,y,z]
write_interp: degree of b-spline used for interpolation
write_mask: True/False mask output image
write_which: determines which images to reslice
write_wrap: Check if interpolation should wrap in [x,y,z]

Outputs

mean_image: Mean image file from the realignment
realigned_files: Realigned files
realignment_parameters: Estimated translation and rotation parameters

Our interface-index documentation provides html versions of our docstrings and includes links to the specific
package documentation. For instance, the nipype.interfaces.fsl.Bet docstring has a direct link to
the online BET Documentation.

1.3.3 FSL interface example
Using FSL to realign a time_series:

import nipype.interfaces.fsl as fsl
realigner = fsl.McFlirt()
realigner.inputs.in_file='timeseries4D.nii'
result = realigner.run()

1.3.4 SPM interface example
Using SPM to realign a time-series:

import nipype.interfaces.spm as spm
from glob import glob
allepi = glob('epi*.nii') # this will return an unsorted list
allepi.sort()
realigner = spm.Realign()
realigner.inputs.in_files = allepi
result = realigner.run()

1.4 Interface caching

This section details the interface-caching mechanism, exposed in the nipype.caching module.

1.4.1 Interface caching: why and how
• Pipelines (also called workflows) specify processing by an execution graph. This is useful because it opens

the door to dependency checking and enable i) to minimize recomputations, ii) to have the execution engine
transparently deal with intermediate file manipulations.
They however do not blend in well with arbitrary Python code, as they must rely on their own execution engine.

• Interfaces give fine control of the execution of each step with a thin wrapper on the underlying software. As a
result that can easily be inserted in Python code.

8 Chapter 1. User Guide

http://www.fmrib.ox.ac.uk/fsl
http://www.fil.ion.ucl.ac.uk/spm

nipype Documentation, Release 0.11.0

However, they force the user to specify explicit input and output file names and cannot do any caching.
This is why nipype exposes an intermediate mechanism, caching that provides transparent output file manage-
ment and caching within imperative Python code rather than a workflow.

1.4.2 A big picture view: using the Memory object
nipype caching relies on the Memory class: it creates an execution context that is bound to a disk cache:

>>> from nipype.caching import Memory
>>> mem = Memory(base_dir='.')

Note that the caching directory is a subdirectory called nipype_mem of the given base_dir. This is done to avoid
polluting the base director.
In the corresponding execution context, nipype interfaces can be turned into callables that can be used as func-
tions using the Memory.cache() method. For instance if we want to run the fslMerge command on a set of
files:

>>> from nipype.interface import fsl
>>> fsl_merge = mem.cache(fsl.Merge)

Note that the Memory.cache() method takes interfaces classes, and not instances.
The resulting fsl_merge object can be applied as a function to parameters, that will form the inputs of the merge
fsl commands. Those inputs are given as keyword arguments, bearing the same name as the name in the inputs
specs of the interface. In IPython, you can also get the argument list by using the fsl_merge? synthax to inspect
the docs:

In [10]: fsl_merge?
String Form:PipeFunc(nipype.interfaces.fsl.utils.Merge, base_dir=/home/varoquau/dev/nipype/nipype/caching/nipype_mem)
Namespace: Interactive
File: /home/varoquau/dev/nipype/nipype/caching/memory.py
Definition: fsl_merge(self, **kwargs)
Docstring:
Use fslmerge to concatenate images

Inputs

Mandatory:
dimension: dimension along which the file will be merged
in_files: None

Optional:
args: Additional parameters to the command
environ: Environment variables (default={})
ignore_exception: Print an error message instead of throwing an exception in case the interface fails to run (default=False)
merged_file: None
output_type: FSL output type

Outputs

merged_file: None
Class Docstring:
...

Thus fsl_merge is applied to parameters as such:

>>> results = fsl_merge(dimension='t', in_files=['a.nii.gz', 'b.nii.gz'])
INFO:workflow:Executing node faa7888f5955c961e5c6aa70cbd5c807 in dir: /home/varoquau/dev/nipype/nipype/caching/nipype_mem/nipype-interfaces-fsl-utils-Merge/faa7888f5955c961e5c6aa70cbd5c807
INFO:workflow:Running: fslmerge -t /home/varoquau/dev/nipype/nipype/caching/nipype_mem/nipype-interfaces-fsl-utils-Merge/faa7888f5955c961e5c6aa70cbd5c807/a_merged.nii /home/varoquau/dev/nipype/nipype/caching/a.nii.gz /home/varoquau/dev/nipype/nipype/caching/b.nii.gz

The results are standard nipype nodes results. In particular, they expose an outputs attribute that carries all the

1.4. Interface caching 9

nipype Documentation, Release 0.11.0

outputs of the process, as specified by the docs.

>>> results.outputs.merged_file
'/home/varoquau/dev/nipype/nipype/caching/nipype_mem/nipype-interfaces-fsl-utils-Merge/faa7888f5955c961e5c6aa70cbd5c807/a_merged.nii'

Finally, and most important, if the node is applied to the same input parameters, it is not computed, and the
results are reloaded from the disk:

>>> results = fsl_merge(dimension='t', in_files=['a.nii.gz', 'b.nii.gz'])
INFO:workflow:Executing node faa7888f5955c961e5c6aa70cbd5c807 in dir: /home/varoquau/dev/nipype/nipype/caching/nipype_mem/nipype-interfaces-fsl-utils-Merge/faa7888f5955c961e5c6aa70cbd5c807
INFO:workflow:Collecting precomputed outputs

Once the Memory is set up and you are applying it to data, an important thing to keep in mind is that you
are using up disk cache. It might be useful to clean it using the methods that Memory provides for this:
Memory.clear_previous_runs(), Memory.clear_runs_since().

Example

A full-blown example showing how to stage multiple operations can be found in the
caching_example.py file.

1.4.3 Usage patterns: working efficiently with caching
The goal of the caching module is to enable writing plain Python code rather than workflows. Use it: instead
of data grabber nodes, use for instance the glob module. To vary parameters, use for loops. To make reusable
code, write Python functions.
One good rule of thumb to respect is to avoid the usage of explicit filenames apart from the outermost inputs
and outputs of your processing. The reason being that the caching mechanism of nipy.caching takes care
of generating the unique hashes, ensuring that, when you vary parameters, files are not overridden by the output
of different computations.

Debuging

If you need to inspect the running environment of the nodes, it may be useful to know where they were
executed. With nipype.caching, you do not control this location as it is encoded by hashes.
To find out where an operation has been persisted, simply look in it’s output variable:

out.runtime.cwd

Finally, the more you explore different parameters, the more you risk creating cached results that will never be
reused. Keep in mind that it may be useful to flush the cache using Memory.clear_previous_runs()
or Memory.clear_runs_since().

1.4.4 API reference
The main class of the nipype.caching module is the Memory class:
class nipype.caching.Memory(base_dir)

Memory context to provide caching for interfaces
Parameters base_dir: string :

The directory name of the location for the caching

Methods

cache(interface)
Returns a callable that caches the output of an interface

10 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

Parameters interface: nipype interface :
The nipype interface class to be wrapped and cached

Returns pipe_func: a PipeFunc callable object :
An object that can be used as a function to apply the interface to arguments. Inputs of
the interface are given as keyword arguments, bearing the same name as the name in
the inputs specs of the interface.

Examples

>>> from tempfile import mkdtemp
>>> mem = Memory(mkdtemp())
>>> from nipype.interfaces import fsl

Here we create a callable that can be used to apply an fsl.Merge interface to files

>>> fsl_merge = mem.cache(fsl.Merge)

Now we apply it to a list of files. We need to specify the list of input files and the dimension along
which the files should be merged.

>>> results = fsl_merge(in_files=['a.nii', 'b.nii'],
... dimension='t')

We can retrieve the resulting file from the outputs: >>> results.outputs.merged_file # doctest: +SKIP
‘...’

clear_previous_runs(warn=True)
Remove all the cache that where not used in the latest run of the memory object: i.e. since the
corresponding Python object was created.

Parameters warn: boolean, optional :
If true, echoes warning messages for all directory removed

clear_runs_since(day=None, month=None, year=None, warn=True)
Remove all the cache that where not used since the given date

Parameters day, month, year: integers, optional :
The integers specifying the latest day (in localtime) that a node should have been
accessed to be kept. If not given, the current date is used.

warn: boolean, optional :
If true, echoes warning messages for all directory removed

Also used are the PipeFunc, callables that are returned by the Memory.cache() decorator:
class nipype.caching.memory.PipeFunc(interface, base_dir, callback=None)

Callable interface to nipype.interface objects
Use this to wrap nipype.interface object and call them specifying their input with keyword arguments:

fsl_merge = PipeFunc(fsl.Merge, base_dir='.')
out = fsl_merge(in_files=files, dimension='t')

Methods

__call__(**kwargs)

__init__(interface, base_dir, callback=None)
Parameters interface: a nipype interface class :

The interface class to wrap
base_dir: a string :

The directory in which the computation will be stored

1.4. Interface caching 11

nipype Documentation, Release 0.11.0

callback: a callable :
An optional callable called each time after the function is called.

1.5 Tutorial : Workflows

This section presents several tutorials on how to setup and use pipelines. Make sure that you have the require-
ments satisfied and go through the steps required for the analysis tutorials.

1.5.1 Essential reading

Pipeline 101

A workflow or pipeline is built by connecting processes or nodes to each other. In the context of nipype, every
interface can be treated as a pipeline node having defined inputs and outputs. Creating a workflow then is a
matter of connecting appropriate outputs to inputs. Currently, workflows are limited to being directional and
cannot have any loops, thereby creating an ordering to data flow. The following nipype component architecture
might help understanding some of the tutorials presented here.

My first pipeline

Although the most trivial workflow consists of a single node, we will create a workflow with two nodes: a
realign node that will send the realigned functional data to a smoothing node. It is important to note that setting
up a workflow is separate from executing it.
1. Import appropriate modules

import nipype.interfaces.spm as spm # the spm interfaces
import nipype.pipeline.engine as pe # the workflow and node wrappers

2. Define nodes
Here we take instances of interfaces and make them pipeline compatible by wrapping them with pipeline specific
elements. To determine the inputs and outputs of a given interface, please see Tutorial : Interfaces. Let’s start
with defining a realign node using the interface nipype.interfaces.spm.Realign

realigner = pe.Node(interface=spm.Realign(), name='realign')
realigner.inputs.in_files = 'somefuncrun.nii'
realigner.inputs.register_to_mean = True

This would be equivalent to:

12 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

realigner = pe.Node(interface=spm.Realign(infile='somefuncrun.nii',
register_to_mean = True),

name='realign')

In Pythonic terms, this is saying that interface option in Node accepts an instance of an interface. The inputs to
this interface can be set either later or while initializing the interface.

Note: In the above example, ‘somefuncrun.nii’ has to exist, otherwise the commands won’t work. A node will
check if appropriate inputs are being supplied.

Similar to the realigner node, we now set up a smoothing node.

smoother = pe.Node(interface=spm.Smooth(fwhm=6), name='smooth')

Now we have two nodes with their inputs defined. Note that we have not defined an input file for the smoothing
node. This will be done by connecting the realigner to the smoother in step 5.
3. Creating and configuring a workflow
Here we create an instance of a workflow and indicate that it should operate in the current directory.

workflow = pe.Workflow(name='preproc')
workflow.base_dir = '.'

4. Adding nodes to workflows (optional)
If nodes are going to be connected (see step 5), this step is not necessary. However, if you would like to run
a node by itself without connecting it to any other node, then you need to add it to the workflow. For adding
nodes, order of nodes is not important.

workflow.add_nodes([smoother, realigner])

This results in a workflow containing two isolated nodes:

5. Connecting nodes to each other
We want to connect the output produced by the node realignment to the input of the node smoothing. This is
done as follows.

workflow.connect(realigner, 'realigned_files', smoother, 'in_files')

Although not shown here, the following notation can be used to connect multiple outputs from one node to
multiple inputs (see step 7 below).

workflow.connect([(realigner, smoother, [('realigned_files', 'in_files')])])

This results in a workflow containing two connected nodes:

1.5. Tutorial : Workflows 13

nipype Documentation, Release 0.11.0

6. Visualizing the workflow
The workflow is represented as a directed acyclic graph (DAG) and one can visualize this using the following
command. In fact, the pictures above were generated using this.

workflow.write_graph()

This creates two files graph.dot and graph_detailed.dot and if graphviz is installed on your system it automati-
cally converts it to png files. If graphviz is not installed you can take the dot files and load them in a graphviz
visualizer elsewhere. You can specify how detailed the graph is going to be, by using “graph2use” argument
which takes the following options:

• hierarchical - creates a graph showing all embedded workflows (default)
• orig - creates a top level graph without expanding internal workflow nodes
• flat - expands workflow nodes recursively
• exec - expands workflows to depict iterables (be careful - can generate really large graphs)

7. Extend it
Now that you have seen a basic pipeline let’s add another node to the above pipeline.

import nipype.algorithms.rapidart as ra
artdetect = pe.Node(interface=ra.ArtifactDetect(), name='artdetect')
artdetect.inputs.use_differences = [True, False]
art.inputs.use_norm = True
art.inputs.norm_threshold = 0.5
art.inputs.zintensity_threshold = 3
workflow.connect([(realigner, artdetect,

[('realigned_files', 'realigned_files'),
('realignment_parameters','realignment_parameters')]

)])

Note: a) How an alternative form of connect was used to connect multiple output fields from the realign node
to corresponding input fields of the artifact detection node.
b) The current visualization only shows connected input and output ports. It does not show all the parameters
that you have set for a node.

This results in

14 Chapter 1. User Guide

http://www.graphviz.org/

nipype Documentation, Release 0.11.0

8. Execute the workflow
Assuming that somefuncrun.nii is actually a file or you’ve replaced it with an appropriate one, you can run the
pipeline with:

workflow.run()

This should create a folder called preproc in your current directory, inside which are three folders: realign,
smooth and artdetect (the names of the nodes). The outputs of these routines are in these folders.
pipeline Connected series of processes (processes can be run parallel and or sequential)
workflow (kind of synonymous to pipeline) = hosting the nodes
node = switching-point within a pipeline, you can give it a name (in the above example e.g. realigner), a node

usually requires an or several inputs and will produce an or several outputs
interface = specific software (e.g. FSL, SPM ...) are wrapped in interfaces, within a node instances of an

interface can be run
modules for each interface the according modules have to be imported in the usual pythonic manner

Pipeline 102

Now that you know how to construct a workflow and execute it, we will go into more advanced concepts. This
tutorial focuses on nipype.pipeline.engine.Workflow nipype.pipeline.engine.Node and
nipype.pipeline.engine.MapNode.
A workflow is a directed acyclic graph (DAG) consisting of nodes which can be of type Workflow, Node or
MapNode. Workflows can be re-used and hierarchical workflows can be easily constructed.

‘name’ : the mandatory keyword arg

When instantiating a Workflow, Node or MapNode, a name has to be provided. For any given level of a work-
flow, no two nodes can have the same name. The engine will let you know if this is the case when you add nodes
to a workflow either directly using add_nodes or using the connect function.
Names have many internal uses. They determine the name of the directory in which the workflow/node is run
and the outputs are stored.

realigner = pe.Node(interface=spm.Realign(),
name='RealignSPM')

Now this output will be stored in a directory called RealignSPM. Proper naming of your nodes can be advanta-
geous from the perspective that it provides a semantic descriptor aligned with your thought process. This name
parameter is also used to refer to nodes in embedded workflows.

iterables This can only be set for Node and MapNode. This is syntactic sugar for running a subgraph with the
Node/MapNode at its root in a for loop. For example, consider an fMRI preprocessing pipeline that you would
like to run for all your subjects. You can define a workflow and then execute it for every single subject inside a
for loop. Consider the simplistic example below, where startnode is a node belonging to workflow ‘mywork.’

1.5. Tutorial : Workflows 15

nipype Documentation, Release 0.11.0

for s in subjects:
startnode.inputs.subject_id = s
mywork.run()

The pipeline engine provides a convenience function that simplifies this:

startnode.iterables = ('subject_id', subjects)
mywork.run()

This will achieve the same exact behavior as the for loop above. The workflow graph is:

Now consider the situation in which you want the last node (typically smoothing) of your preprocessing pipeline
to smooth using two different kernels (0 mm and 6 mm FWHM). Again the common approach would be:

for s in subjects:
startnode.inputs.subject_id = s
uptosmoothingworkflow.run()
smoothnode.inputs.infile = lastnode.output.outfile
for fwhm in [0, 6]:

smoothnode.inputs.fwhm = fwhm
remainingworkflow.run()

Instead of having multiple for loops at various stages, you can set up another set of iterables for the smoothn-
ode.

startnode.iterables = ('subject_id', subjects)
smoothnode.iterables = ('fwhm', [0, 6])
mywork.run()

This will run the preprocessing workflow for two different smoothing kernels over all subjects.

Thus setting iterables has a multiplicative effect. In the above examples there is a separate, distinct specifymodel
node that’s executed for each combination of subject and smoothing.

iterfield This is a mandatory keyword arg for MapNode. This enables running the underlying interface over a
set of inputs and is particularly useful when the interface can only operate on a single input. For example, the
nipype.interfaces.fsl.BET will operate on only one (3d or 4d) NIfTI file. But wrapping BET in a
MapNode can execute it over a list of files:

better = pe.MapNode(interface=fsl.Bet(), name='stripper',
iterfield=['in_file'])

better.inputs.in_file = ['file1.nii','file2.nii']
better.run()

This will create a directory called stripper and inside it two subdirectories called in_file_0 and
in_file_1. The output of running bet separately on each of those files will be stored in those two subdi-

16 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

rectories.
This can be extended to run it on pairwise inputs. For example,

transform = pe.MapNode(interface=fs.ApplyVolTransform(),
name='warpvol',
iterfield=['source_file', 'reg_file'])

transform.inputs.source_file = ['file1.nii','file2.nii']
transform.inputs.reg_file = ['file1.reg','file2.reg']
transform.run()

The above will be equivalent to running transform by taking corresponding items from each of the two fields in
iterfield. The subdirectories get always named with respect to the first iterfield.

overwrite The overwrite keyword arg forces a node to be rerun.

The clone function The clone function can be used to create a copy of a workflow. No references to the
original workflow are retained. As such the clone function requires a name keyword arg that specifies a new
name for the duplicate workflow.

Pipeline 103

Modifying inputs to pipeline nodes

Two nodes can be connected as shown below.

workflow.connect(realigner, 'realigned_files', smoother, 'infile')

The connection mechanism allows for a function to be evaluated on the output field (‘realigned files’) of the
source node (realigner) and have its result be sent to the input field (‘infile’) of the destination node (smoother).

def reverse_order(inlist):
inlist.reverse()
return inlist

workflow.connect(realigner, ('realigned_files', reverse_order),
smoother, 'infile')

This can be extended to provide additional arguments to the function. For example:

def reorder(inlist, order):
return [inlist[item] for item in order]

workflow.connect(realigner, ('realigned_files', reorder, [2, 3, 0, 1]),
smoother, 'infile')

In this example, we assume the realigned_files produces a list of 4 files. We can reorder these files in a particular
order using the modifier. Since such modifications are not tracked, they should be used with extreme care and
only in cases where absolutely necessary. Often, one may find that it is better to insert a node rather than a
function.

Distributed computation

The pipeline engine has built-in support for distributed computation on clusters. This can be achieved via
plugin-modules for Python multiprocessing or the IPython distributed computing interface or SGE/PBS/Condor,
provided the user sets up a workflow on a shared filesystem. These modules can take arguments that specify
additional distribution engine parameters. For IPython the environment needs to be configured for distributed
operation. Details are available at Using Nipype Plugins.
The default behavior is to run in series using the Linear plugin.

1.5. Tutorial : Workflows 17

http://www.python.org
http://ipython.scipy.org
http://ipython.scipy.org

nipype Documentation, Release 0.11.0

workflow.run()

In some cases it may be advantageous to run the workflow in series locally (e.g., debugging, small-short
pipelines, large memory only interfaces, relocating working directory/updating hashes).

Debugging

When a crash happens while running a pipeline, a crashdump is stored in the pipeline’s working directory unless
the config option ‘crashdumpdir’ has been set (see :ref:config_options).
The crashdump is a compressed numpy file that stores a dictionary containing three fields:

1. node - the node that failed
2. execgraph - the graph that the node came from
3. traceback - from local or remote session for the failure.

We keep extending the information contained in the file and making it easier to troubleshoot the failures. How-
ever, in the meantime the following can help to recover information related to the failure.
in IPython do (%pdb in IPython is similar to dbstop if error in Matlab):

from nipype.utils.filemanip import loadflat
crashinfo = loadflat('crashdump....npz')
%pdb
crashinfo['node'].run() # re-creates the crash
pdb> up #typically, but not necessarily the crash is one stack frame up
pdb> inspect variables
pdb>quit

Relocation of workdir

In some circumstances, one might decide to move their entire working directory to a new location. It would be
convenient to rerun only necessary components of the pipeline, instead of running all the nodes all over again.
It is possible to do that with the updatehash() function.

workflow.run(updatehash=True)

This will execute the workflow and update all the hash values that were stored without actually running any of
the interfaces.

MapNode, iterfield, and iterables explained

In this chapter we will try to explain the concepts behind MapNode, iterfield, and iterables.

MapNode and iterfield

Imagine that you have a list of items (lets say files) and you want to execute the same node on them (for example
some smoothing or masking). Some nodes accept multiple files and do exactly the same thing on them, but some
don’t (they expect only one file). MapNode can solve this problem. Imagine you have the following workflow:

18 Chapter 1. User Guide

http://ipython.scipy.org
http://ipython.scipy.org

nipype Documentation, Release 0.11.0

A

B

C

Node “A” outputs a list of files, but node “B” accepts only one file. Additionally “C” expects a list of files. What
you would like is to run “B” for every file in the output of “A” and collect the results as a list and feed it to “C”.
Something like this:

A

B1 B2 B3 Bn

C

The code to achieve this is quite simple

import nipype.pipeline.engine as pe
a = pe.Node(interface=A(), name="a")
b = pe.MapNode(interface=B(), name="b", iterfield=['in_file'])
c = pe.Node(interface=C(), name="c")

my_workflow = pe.Workflow(name="my_workflow")

1.5. Tutorial : Workflows 19

nipype Documentation, Release 0.11.0

my_workflow.connect([(a,b,[('out_files','in_file')]),
(b,c,[('out_file','in_files')])
])

assuming that interfaces “A” and “C” have one input “in_files” and one output “out_files” (both lists of files).
Interface “B” has single file input “in_file” and single file output “out_file”.
You probably noticed that you connect nodes as if “B” could accept and output list of files. This is because
it is wrapped using MapNode instead of Node. This special version of node will (under the bonnet) create an
instance of “B” for every item in the list from the input. The compulsory argument “iterfield” defines which
input should it iterate over (for example in single file smooth interface you would like to iterate over input files
not the smoothing width). At the end outputs are collected into a list again. In other words this is map and
reduce scenario.
You might have also noticed that the iterfield arguments expects a list of input names instead of just one name.
This suggests that there can be more than one! Even though a bit confusing this is true. You can specify more
than one input to iterate over but the lists that you provide (for all the inputs specified in iterfield) have to have
the same length. MapNode will then pair the parameters up and run the first instance with first set of parameters
and second with second set of parameters. For example, this code:

b = pe.MapNode(interface=B(), name="b", iterfield=['in_file', 'n'])
b.inputs.in_file = ['file', 'another_file', 'different_file']
b.inputs.n = [1,2,3]
b.run()

is almost the same as running

b1 = pe.Node(interface=B(), name="b1")
b1.inputs.in_file = 'file'
b1.inputs.n = 1

b2 = pe.Node(interface=B(), name="b2")
b2.inputs.in_file = 'another_file'
b2.inputs.n = 2

b3 = pe.Node(interface=B(), name="b3")
b3.inputs.in_file = 'different_file'
b3.inputs.n = 3

It is a rarely used feature, but you can sometimes find it useful.
In more advanced applications it is useful to be able to iterate over items of nested lists (for example
[[1,2],[3,4]]). MapNode allows you to do this with the “nested=True” parameter. Outputs will preserve the
same nested structure as the inputs.

Iterables

Now imagine a different scenario. You have your workflow as before

20 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

A

B

C

and there are three possible values of one of the inputs node “B” you would like to investigate (for example
width of 2,4, and 6 pixels of a smoothing node). You would like to see how different parameters in node “B”
would influence everything that depends on its outputs (node “C” in our example). Therefore the new graph
should look like this:

A

B1 B2 B3

C1 C2 C3

Of course you can do it manually by creating copies of all the nodes for different parameter set, but this can
be very time consuming, especially when there are more than one node taking inputs from “B”. Luckily nipype
supports this scenario! Its called iterables and and you use it this way:

import nipype.pipeline.engine as pe
a = pe.Node(interface=A(), name="a")
b = pe.Node(interface=B(), name="b")

1.5. Tutorial : Workflows 21

nipype Documentation, Release 0.11.0

b.iterables = ("n", [1, 2, 3])
c = pe.Node(interface=C(), name="c")

my_workflow = pe.Workflow(name="my_workflow")
my_workflow.connect([(a,b,[('out_file','in_file')]),

(b,c,[('out_file','in_file')])
])

Assuming that you want to try out values 1, 2, and 3 of input “n” of the node “B”. This will also create three
different versions of node “C” - each with inputs from instances of node “C” with different values of “n”.
Additionally, you can set multiple iterables for a node with a list of tuples in the above format.
Iterables are commonly used to execute the same workflow for many subjects. Usually one parametrises Data-
Grabber node with subject ID. This is achieved by connecting an IdentityInterface in front of DataGrabber.
When you set iterables of the IdentityInterface to the list of subjects IDs, the same workflow will be executed
for every subject. See examples/fmri_spm to see this pattern in action.

DataGrabber and DataSink explained

In this chapter we will try to explain the concepts behind DataGrabber and DataSink.

Why do we need these interfaces?

A typical workflow takes data as input and produces data as the result of one or more operations. One can set
the data required by a workflow directly as illustrated below.

from fsl_tutorial2 import preproc
preproc.base_dir = os.path.abspath('.')
preproc.inputs.inputspec.func = os.path.abspath('data/s1/f3.nii')
preproc.inputs.inputspec.struct = os.path.abspath('data/s1/struct.nii')
preproc.run()

Typical neuroimaging studies require running workflows on multiple subjects or different parameterizations of
algorithms. One simple approach to that would be to simply iterate over subjects.

from fsl_tutorial2 import preproc
for name in subjects:
preproc.base_dir = os.path.abspath('.')
preproc.inputs.inputspec.func = os.path.abspath('data/%s/f3.nii'%name)
preproc.inputs.inputspec.struct = os.path.abspath('data/%s/struct.nii'%name)
preproc.run()

However, in the context of complex workflows and given that users typically arrange their imaging and other data
in a semantically hierarchical data store, an alternative mechanism for reading and writing the data generated by
a workflow is often necessary. As the names suggest DataGrabber is used to get at data stored in a shared file
system while DataSink is used to store the data generated by a workflow into a hierarchical structure on disk.

DataGrabber

DataGrabber is an interface for collecting files from hard drive. It is very flexible and supports almost any file
organization of your data you can imagine.
You can use it as a trivial use case of getting a fixed file. By default, DataGrabber stores its outputs in a field
called outfiles.

import nipype.interfaces.io as nio
datasource1 = nio.DataGrabber()
datasource1.inputs.base_directory = os.getcwd()
datasource1.inputs.template = 'data/s1/f3.nii'
results = datasource1.run()

22 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

Or you can get at all uncompressed NIfTI files starting with the letter ‘f’ in all directories starting with the letter
‘s’.

datasource2.inputs.base_directory = '/mass'
datasource2.inputs.template = 'data/s*/f*.nii'

Two special inputs were used in these previous cases. The input base_directory indicates in which directory to
search, while the input template indicates the string template to match. So in the previous case datagrabber is
looking for path matches of the form /mass/data/s*/f*.

Note: When used with wildcards (e.g., s* and f* above) DataGrabber does not return data in sorted order. In
order to force it to return data in sorted order, one needs to set the input sorted = True. However, when explicitly
specifying an order as we will see below, sorted should be set to False.

More useful cases arise when the template can be filled by other inputs. In the example below, we define an
input field for datagrabber called run. This is then used to set the template (see %d in the template).

datasource3 = nio.DataGrabber(infields=['run'])
datasource3.inputs.base_directory = os.getcwd()
datasource3.inputs.template = 'data/s1/f%d.nii'
datasource3.inputs.run = [3, 7]

This will return files basedir/data/s1/f3.nii and basedir/data/s1/f7.nii. We can take this a step further and pair
subjects with runs.

datasource4 = nio.DataGrabber(infields=['subject_id', 'run'])
datasource4.inputs.template = 'data/%s/f%d.nii'
datasource4.inputs.run = [3, 7]
datasource4.inputs.subject_id = ['s1', 's3']

This will return files basedir/data/s1/f3.nii and basedir/data/s3/f7.nii.

A more realistic use-case In a typical study one often wants to grab different files for a given subject and
store them in semantically meaningful outputs. In the following example, we wish to retrieve all the functional
runs and the structural image for the subject ‘s1’.

datasource = nio.DataGrabber(infields=['subject_id'], outfields=['func', 'struct'])
datasource.inputs.base_directory = 'data'
datasource.inputs.template = '*'
datasource.inputs.field_template = dict(func='%s/f%d.nii',

struct='%s/struct.nii')
datasource.inputs.template_args = dict(func=[['subject_id', [3,5,7,10]]],

struct=[['subject_id']])
datasource.inputs.subject_id = 's1'

Two more fields are introduced: field_template and template_args. These fields are both dictionaries whose
keys correspond to the outfields keyword. The field_template reflects the search path for each output field, while
the template_args reflect the inputs that satisfy the template. The inputs can either be one of the named inputs
specified by the infields keyword arg or it can be raw strings or integers corresponding to the template. For the
func output, the %s in the field_template is satisfied by subject_id and the %d is field in by the list of numbers.

Note: We have not set sorted to True as we want the DataGrabber to return the functional files in the order it
was specified rather than in an alphabetic sorted order.

DataSink

A workflow working directory is like a cache. It contains not only the outputs of various processing stages, it
also contains various extraneous information such as execution reports, hashfiles determining the input state of
processes. All of this is embedded in a hierarchical structure that reflects the iterables that have been used in the

1.5. Tutorial : Workflows 23

nipype Documentation, Release 0.11.0

workflow. This makes navigating the working directory a not so pleasant experience. And typically the user is
interested in preserving only a small percentage of these outputs. The DataSink interface can be used to extract
components from this cache and store it at a different location. For XNAT-based storage, see XNATSink .

Note: Unlike other interfaces, a DataSink‘s inputs are defined and created by using the workflow connect
statement. Currently disconnecting an input from the DataSink does not remove that connection port.

Let’s assume we have the following workflow.

InputNode

Realign

DataSink

The following code segment defines the DataSink node and sets the base_directory in which all outputs will be
stored. The container input creates a subdirectory within the base_directory. If you are iterating a workflow
over subjects, it may be useful to save it within a folder with the subject id.

datasink = pe.Node(nio.DataSink(), name='sinker')
datasink.inputs.base_directory = '/path/to/output'
workflow.connect(inputnode, 'subject_id', datasink, 'container')

If we wanted to save the realigned files and the realignment parameters to the same place the most intuitive
option would be:

workflow.connect(realigner, 'realigned_files', datasink, 'motion')
workflow.connect(realigner, 'realignment_parameters', datasink, 'motion')

However, this will not work as only one connection is allowed per input port. So we need to create a second
port. We can store the files in a separate folder.

workflow.connect(realigner, 'realigned_files', datasink, 'motion')
workflow.connect(realigner, 'realignment_parameters', datasink, 'motion.par')

The period (.) indicates that a subfolder called par should be created. But if we wanted to store it in the same
folder as the realigned files, we would use the .@ syntax. The @ tells the DataSink interface to not create the
subfolder. This will allow us to create different named input ports for DataSink and allow the user to store the
files in the same folder.

workflow.connect(realigner, 'realigned_files', datasink, 'motion')
workflow.connect(realigner, 'realignment_parameters', datasink, 'motion.@par')

The syntax for the input port of DataSink takes the following form:

24 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

string[[.[@]]string[[.[@]]string] ...]
where parts between paired [] are optional.

MapNode In order to use DataSink inside a MapNode, it’s inputs have to be defined inside the constructor
using the infields keyword arg.

Parameterization As discussed in MapNode, iterfield, and iterables explained, one can run a workflow iterat-
ing over various inputs using the iterables attribute of nodes. This means that a given workflow can have multiple
outputs depending on how many iterables are there. Iterables create working directory subfolders such as _iter-
able_name_value. The parameterization input parameter controls whether the data stored using DataSink is in
a folder structure that contains this iterable information or not. It is generally recommended to set this to True
when using multiple nested iterables.

Substitutions The substitutions and substitutions_regexp inputs allow users to modify the output destination
path and name of a file. Substitutions are a list of 2-tuples and are carried out in the order in which they were
entered. Assuming that the output path of a file is:

/root/container/_variable_1/file_subject_realigned.nii

we can use substitutions to clean up the output path.

datasink.inputs.substitutions = [('_variable', 'variable'),
('file_subject_', '')]

This will rewrite the file as:

/root/container/variable_1/realigned.nii

Note: In order to figure out which substitutions are needed it is often useful to run the workflow on a limited
set of iterables and then determine the substitutions.

1.5.2 Beginner’s guide
By Michael Notter. Available here

1.5.3 Example workflows

1.5.4 Requirements
All tutorials
Release 0.4 of nipype and it’s dependencies have been installed
Analysis tutorials
FSL, FreeSurfer, Camino, ConnectomeViewer and MATLAB are available and callable from the
command line
SPM 5/8 is installed and callable in matlab
Space: 3-10 GB

1.5.5 Checklist for analysis tutorials
For the analysis tutorials, we will be using a slightly modified version of the FBIRN Phase I travelling data set.

Step 0

Download and extract the Pipeline tutorial data (429MB).
(checksum: 56ed4b7e0aac5627d1724e9c10cd26a7)

1.5. Tutorial : Workflows 25

http://miykael.github.com/nipype-beginner-s-guide/index.html
http://www.fmrib.ox.ac.uk/fsl
http://surfer.nmr.mgh.harvard.edu
http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/pmwiki.php
http://www.mathworks.com
http://www.fil.ion.ucl.ac.uk/spm
http://sourceforge.net/projects/nipy/files/nipype/nipype-0.2/nipype-tutorial.tar.bz2/download

nipype Documentation, Release 0.11.0

Step 1.

Ensure that all programs are available by calling bet, matlab and then which spm within matlab to ensure
you have spm5/8 in your matlab path.

Step 2.

You can now run the tutorial by typing python tutorial_script.py within the nipype-tutorial direc-
tory. This will run a full first level analysis on two subjects following by a 1-sample t-test on their first level
results. The next section goes through each section of the tutorial script and describes what it is doing.

1.6 Using Nipype Plugins

The workflow engine supports a plugin architecture for workflow execution. The available plugins allow local
and distributed execution of workflows and debugging. Each available plugin is described below.
Current plugins are available for Linear, Multiprocessing, IPython distributed processing platforms and for direct
processing on SGE, PBS, HTCondor, LSF, and SLURM. We anticipate future plugins for the Soma workflow.

Note: The current distributed processing plugins rely on the availability of a shared filesystem across compu-
tational nodes.
A variety of config options can control how execution behaves in this distributed context. These are listed later
on in this page.

All plugins can be executed with:

workflow.run(plugin=PLUGIN_NAME, plugin_args=ARGS_DICT)

Optional arguments:

status_callback : a function handle
max_jobs : maximum number of concurrent jobs
max_tries : number of times to try submitting a job
retry_timeout : amount of time to wait between tries

Note: Except for the status_callback, the remaining arguments only apply to the distributed plugins: Multi-
Proc/IPython(X)/SGE/PBS/HTCondor/HTCondorDAGMan/LSF

For example:

1.6.1 Plugins

Debug

This plugin provides a simple mechanism to debug certain components of a workflow without executing any
node.
Mandatory arguments:

callable : A function handle that receives as arguments a node and a graph

The function callable will called for every node from a topological sort of the execution graph.

Linear

This plugin runs the workflow one node at a time in a single process locally. The order of the nodes is determined
by a topological sort of the workflow:

workflow.run(plugin='Linear')

26 Chapter 1. User Guide

http://ipython.scipy.org
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.clusterresources.com/products/torque-resource-manager.php
http://www.cs.wisc.edu/htcondor/
http://www.platform.com/Products/platform-lsf
http://slurm.schedmd.com/
http://brainvisa.info/soma/soma-workflow/

nipype Documentation, Release 0.11.0

MultiProc

Uses the Python multiprocessing library to distribute jobs as new processes on a local system.
Optional arguments:

n_procs : Number of processes to launch in parallel, if not set number of
processors/threads will be automatically detected

To distribute processing on a multicore machine, simply call:

workflow.run(plugin='MultiProc')

This will use all available CPUs. If on the other hand you would like to restrict the number of used resources
(to say 2 CPUs), you can call:

workflow.run(plugin='MultiProc', plugin_args={'n_procs' : 2}

IPython

This plugin provide access to distributed computing using IPython parallel machinery.

Note: We provide backward compatibility with IPython versions earlier than 0.10.1 using the IPythonX plugin.
Please read the IPython documentation to determine how to setup your cluster for distributed processing. This
typically involves calling ipcluster.

Once the clients have been started, any pipeline executed with:

workflow.run(plugin='IPython')

SGE/PBS

In order to use nipype with SGE or PBS you simply need to call:

workflow.run(plugin='SGE')
workflow.run(plugin='PBS')

Optional arguments:

template: custom template file to use
qsub_args: any other command line args to be passed to qsub.
max_jobname_len: (PBS only) maximum length of the job name. Default 15.

For example, the following snippet executes the workflow on myqueue with a custom template:

workflow.run(plugin='SGE',
plugin_args=dict(template='mytemplate.sh', qsub_args='-q myqueue')

In addition to overall workflow configuration, you can use node level configuration for PBS/SGE:

node.plugin_args = {'qsub_args': '-l nodes=1:ppn=3'}

this would apply only to the node and is useful in situations, where a particular node might use more resources
than other nodes in a workflow.

Note: Setting the keyword overwrite would overwrite any global configuration with this local configuration:

node.plugin_args = {'qsub_args': '-l nodes=1:ppn=3', 'overwrite': True}

SGEGraph

SGEGraph is an execution plugin working with Sun Grid Engine that allows for submitting entire graph of
dependent jobs at once. This way Nipype does not need to run a monitoring process - SGE takes care of this.
The use of SGEGraph is preferred over SGE since the latter adds unnecessary load on the submit machine.

1.6. Using Nipype Plugins 27

http://www.python.org
http://ipython.scipy.org
http://ipython.scipy.org
http://ipython.scipy.org
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.clusterresources.com/products/torque-resource-manager.php
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html

nipype Documentation, Release 0.11.0

Note: When rerunning unfinished workflows using SGEGraph you may decide not to submit jobs for Nodes
that previously finished running. This can speed up execution, but new or modified inputs that would previously
trigger a Node to rerun will be ignored. The following option turns on this functionality:

workflow.run(plugin='SGEGraph', plugin_args = {'dont_resubmit_completed_jobs': True})

LSF

Submitting via LSF is almost identical to SGE above above except for the optional arguments field:

workflow.run(plugin='LSF')

Optional arguments:

template: custom template file to use
bsub_args: any other command line args to be passed to bsub.

SLURM

Submitting via SLURM is almost identical to SGE above except for the optional arguments field:
workflow.run(plugin=’SLURM’)

Optional arguments:

template: custom template file to use
sbatch_args: any other command line args to be passed to bsub.

SLURMGraph

SLURMGraph is an execution plugin working with SLURM that allows for submitting entire graph of dependent
jobs at once. This way Nipype does not need to run a monitoring process - SLURM takes care of this. The use
of SLURMGraph plugin is preferred over the vanilla SLURM plugin since the latter adds unnecessary load on
the submit machine.

Note: When rerunning unfinished workflows using SLURMGraph you may decide not to submit jobs for Nodes
that previously finished running. This can speed up execution, but new or modified inputs that would previously
trigger a Node to rerun will be ignored. The following option turns on this functionality:

workflow.run(plugin='SLURMGraph', plugin_args = {'dont_resubmit_completed_jobs': True})

HTCondor

DAGMan

With its DAGMan component HTCondor (previously Condor) allows for submitting entire graphs of dependent
jobs at once (similar to SGEGraph and SLURMGraph). With the CondorDAGMan plug-in Nipype can utilize
this functionality to submit complete workflows directly and in a single step. Consequently, and in contrast
to other plug-ins, workflow execution returns almost instantaneously – Nipype is only used to generate the
workflow graph, while job scheduling and dependency resolution are entirely managed by HTCondor.
Please note that although DAGMan supports specification of data dependencies as well as data provisioning on
compute nodes this functionality is currently not supported by this plug-in. As with all other batch systems
supported by Nipype, only HTCondor pools with a shared file system can be used to process Nipype workflows.
Workflow execution with HTCondor DAGMan is done by calling:

workflow.run(plugin='CondorDAGMan')

28 Chapter 1. User Guide

http://slurm.schedmd.com/
http://research.cs.wisc.edu/htcondor/dagman/dagman.html
http://www.cs.wisc.edu/htcondor/
http://www.cs.wisc.edu/htcondor/
http://research.cs.wisc.edu/htcondor/dagman/dagman.html

nipype Documentation, Release 0.11.0

Job execution behavior can be tweaked with the following optional plug-in arguments. The value of most
arguments can be a literal string or a filename, where in the latter case the content of the file will be used as the
argument value:

submit_template : submit spec template for individual jobs in a DAG (see
CondorDAGManPlugin.default_submit_template for the default.

initial_specs : additional submit specs that are prepended to any job's
submit file

override_specs : additional submit specs that are appended to any job's
submit file

wrapper_cmd : path to an exectuable that will be started instead of a node
script. This is useful for wrapper script that execute certain
functionality prior or after a node runs. If this option is
given the wrapper command is called with the respective Python
exectuable and the path to the node script as final arguments

wrapper_args : optional additional arguments to a wrapper command
dagman_args : arguments to be prepended to the job execution script in the

dagman call
block : if True the plugin call will block until Condor has finished

prcoessing the entire workflow (default: False)

Please see the HTCondor documentation for details on possible configuration options and command line argu-
ments.
Using the wrapper_cmd argument it is possible to combine Nipype workflow execution with check-
point/migration functionality offered by, for example, DMTCP. This is especially useful in the case of workflows
with long running nodes, such as Freesurfer’s recon-all pipeline, where Condor’s job prioritization algorithm
could lead to jobs being evicted from compute nodes in order to maximize overall troughput. With check-
point/migration enabled such a job would be checkpointed prior eviction and resume work from the check-
pointed state after being rescheduled – instead of restarting from scratch.
On a Debian system, executing a workflow with support for checkpoint/migration for all nodes could look like
this:

define common parameters
dmtcp_hdr = """
should_transfer_files = YES
when_to_transfer_output = ON_EXIT_OR_EVICT
kill_sig = 2
environment = DMTCP_TMPDIR=./;JALIB_STDERR_PATH=/dev/null;DMTCP_PREFIX_ID=$(CLUSTER)_$(PROCESS)
"""
shim_args = "--log %(basename)s.shimlog --stdout %(basename)s.shimout --stderr %(basename)s.shimerr"
run workflow
workflow.run(

plugin='CondorDAGMan',
plugin_args=dict(initial_specs=dmtcp_hdr,

wrapper_cmd='/usr/lib/condor/shim_dmtcp',
wrapper_args=shim_args)

)

qsub emulation

Note: This plug-in is deprecated and users should migrate to the more robust and more versatile
CondorDAGMan plug-in.

Despite the differences between HTCondor and SGE-like batch systems the plugin usage (incl. supported
arguments) is almost identical. The HTCondor plugin relies on a qsub emulation script for HTCondor, called
condor_qsub that can be obtained from a Git repository on git.debian.org. This script is currently not shipped
with a standard HTCondor distribution, but is included in the HTCondor package from http://neuro.debian.net.

1.6. Using Nipype Plugins 29

http://research.cs.wisc.edu/htcondor/manual
http://dmtcp.sourceforge.net
http://anonscm.debian.org/gitweb/?p=pkg-exppsy/condor.git;a=blob_plain;f=debian/condor_qsub;hb=HEAD
http://neuro.debian.net

nipype Documentation, Release 0.11.0

It is sufficient to download this script and install it in any location on a system that is included in the PATH
configuration.
Running a workflow in a HTCondor pool is done by calling:

workflow.run(plugin='Condor')

The plugin supports a limited set of qsub arguments (qsub_args) that cover the most common use cases. The
condor_qsub emulation script translates qsub arguments into the corresponding HTCondor terminology and
handles the actual job submission. For details on supported options see the manpage of condor_qsub.
Optional arguments:

qsub_args: any other command line args to be passed to condor_qsub.

1.7 Configuration File

Some of the system wide options of Nipype can be configured using a configuration file. Nipype looks for the
file in the local folder under the name nipype.cfg and in ~/.nipype/nipype.cfg (in this order). If an
option will not be specified a default value will be assumed. The file is divided into following sections:

1.7.1 Logging
workflow_level How detailed the logs regarding workflow should be (possible values: INFO and DEBUG; de-

fault value: INFO)
filemanip_level How detailed the logs regarding file operations (for example overwriting warning) should be

(possible values: INFO and DEBUG; default value: INFO)
interface_level How detailed the logs regarding interface execution should be (possible values: INFO and

DEBUG; default value: INFO)
log_to_file Indicates whether logging should also send the output to a file (possible values: true and false;

default value: false)
log_directory Where to store logs. (string, default value: home directory)
log_size Size of a single log file. (integer, default value: 254000)
log_rotate How many rotation should the log file make. (integer, default value: 4)

1.7.2 Execution
plugin This defines which execution plugin to use. (possible values: Linear, MultiProc, SGE, IPython;

default value: Linear)
stop_on_first_crash Should the workflow stop upon first node crashing or try to execute as many nodes as

possible? (possible values: true and false; default value: false)
stop_on_first_rerun Should the workflow stop upon first node trying to recompute (by that we mean rerunning

a node that has been run before - this can happen due changed inputs and/or hash_method since the last
run). (possible values: true and false; default value: false)

hash_method Should the input files be checked for changes using their content (slow, but 100% accurate) or
just their size and modification date (fast, but potentially prone to errors)? (possible values: content and
timestamp; default value: content)

keep_inputs Ensures that all inputs that are created in the nodes working directory are kept after node execution
(possible values: true and false; default value: false)

single_thread_matlab Should all of the Matlab interfaces (including SPM) use only one thread? This is useful
if you are parallelizing your workflow using MultiProc or IPython on a single multicore machine. (possible
values: true and false; default value: true)

display_variable What DISPLAY variable should all command line interfaces be run with. This is useful if you
are using xnest or Xvfb and you would like to redirect all spawned windows to it. (possible values: any X
server address; default value: not set)

remove_unnecessary_outputs This will remove any interface outputs not needed by the workflow. If the re-
quired outputs from a node changes, rerunning the workflow will rerun the node. Outputs of leaf nodes

30 Chapter 1. User Guide

http://www.x.org/archive/X11R7.5/doc/man/man1/Xnest.1.html
http://www.x.org/archive/X11R6.8.1/doc/Xvfb.1.html

nipype Documentation, Release 0.11.0

(nodes whose outputs are not connected to any other nodes) will never be deleted independent of this
parameter. (possible values: true and false; default value: true)

try_hard_link_datasink When the DataSink is used to produce an orginized output file outside of nipypes
internal cache structure, a file system hard link will be attempted first. A hard link allow multiple file paths
to point to the same physical storage location on disk if the condisions allow. By refering to the same
physical file on disk (instead of copying files byte-by-byte) we can avoid unnecessary data duplication.
If hard links are not supported for the source or destination paths specified, then a standard byte-by-byte
copy is used. (possible values: true and false; default value: true)

use_relative_paths Should the paths stored in results (and used to look for inputs) be relative or absolute.
Relative paths allow moving the whole working directory around but may cause problems with symlinks.
(possible values: true and false; default value: false)

local_hash_check Perform the hash check on the job submission machine. This option minimizes the number
of jobs submitted to a cluster engine or a multiprocessing pool to only those that need to be rerun. (possible
values: true and false; default value: true)

job_finished_timeout When batch jobs are submitted through, SGE/PBS/Condor they could be killed exter-
nally. Nipype checks to see if a results file exists to determine if the node has completed. This timeout
determines for how long this check is done after a job finish is detected. (float in seconds; default value:
5)

remove_node_directories (EXPERIMENTAL) Removes directories whose outputs have already been used up.
Doesn’t work with IdentiInterface or any node that patches data through (without copying) (possible val-
ues: true and false; default value: false)

stop_on_unknown_version If this is set to True, an underlying interface will raise an error, when no version
information is available. Please notify developers or submit a patch.

parameterize_dirs If this is set to True, the node’s output directory will contain full parameterization of any
iterable, otherwise parameterizations over 32 characters will be replaced by their hash. (possible values:
true and false; default value: true)

poll_sleep_duration This controls how long the job submission loop will sleep between submitting all pending
jobs and checking for job completion. To be nice to cluster schedulers the default is set to 60 seconds.

xvfb_max_wait Maximum time (in seconds) to wait for Xvfb to start, if the _redirect_x parameter of an Inter-
face is True.

1.7.3 Example

[logging]
workflow_level = DEBUG

[execution]
stop_on_first_crash = true
hash_method = timestamp
display_variable = :1

Workflow.config property has a form of a nested dictionary reflecting the structure of the .cfg file.

myworkflow = pe.Workflow()
myworkflow.config['execution'] = {'stop_on_first_rerun': 'True',

'hash_method': 'timestamp'}

You can also directly set global config options in your workflow script. An example is shown below. This needs
to be called before you import the pipeline or the logger. Otherwise logging level will not be reset.

from nipype import config
cfg = dict(logging=dict(workflow_level = 'DEBUG'),

execution={'stop_on_first_crash': False,
'hash_method': 'content'})

config.update_config(cfg)

1.7. Configuration File 31

nipype Documentation, Release 0.11.0

1.7.4 Enabling logging to file
By default, logging to file is disabled. One can enable and write the file to a location of choice as in the example
below.

import os
from nipype import config, logging
config.update_config({'logging': {'log_directory': os.getcwd(),

'log_to_file': True}})
logging.update_logging(config)

The logging update line is necessary to change the behavior of logging such as output directory, logging level,
etc.,.

1.7.5 Debug configuration
To enable debug mode, one can insert the following lines:

from nipype import config, logging
config.enable_debug_mode()
logging.update_logging(config)

In this mode the following variables are set:

config.set('execution', 'stop_on_first_crash', 'true')
config.set('execution', 'remove_unnecessary_outputs', 'false')
config.set('logging', 'workflow_level', 'DEBUG')
config.set('logging', 'interface_level', 'DEBUG')

1.8 Debugging Nipype Workflows

Throughout Nipype we try to provide meaningful error messages. If you run into an error that does not have a
meaningful error message please let us know so that we can improve error reporting.
Here are some notes that may help debugging workflows or understanding performance issues.

1. Always run your workflow first on a single iterable (e.g. subject) and gradually increase the execution
distribution complexity (Linear->MultiProc-> SGE).

2. Use the debug config mode. This can be done by setting:

from nipype import config
config.enable_debug_mode()

as the first import of your nipype script.

Note: Turning on debug will rerun your workflows and will rerun them after debugging is turned off.

3. There are several configuration options that can help with debugging. See Configuration File for more
details:

keep_inputs
remove_unnecessary_outputs
stop_on_first_crash
stop_on_first_rerun

4. When running in distributed mode on cluster engines, it is possible for a node to fail without generating a
crash file in the crashdump directory. In such cases, it will store a crash file in the batch directory.

5. All Nipype crashfiles can be inspected with the nipype_display_crash utility.
6. Nipype determines the hash of the input state of a node. If any input contains strings that represent files

on the system path, the hash evaluation mechanism will determine the timestamp or content hash of each
of those files. Thus any node with an input containing huge dictionaries (or lists) of file names can cause
serious performance penalties.

32 Chapter 1. User Guide

http://nipy.org/nipype/

nipype Documentation, Release 0.11.0

7. For HUGE data processing, ‘stop_on_first_crash’:’False’, is needed to get the bulk of processing
done, and then ‘stop_on_first_crash’:’True’, is needed for debugging and finding failing cases. Setting
‘stop_on_first_crash’: ‘False’ is a reasonable option when you would expect 90% of the data to execute
properly.

8. Sometimes nipype will hang as if nothing is going on and if you hit Ctrl+C you will get a Concurrent-
LogHandler error. Simply remove the pypeline.lock file in your home directory and continue.

9. One many clusters with shared NFS mounts synchronization of files across clusters may not happen before
the typical NFS cache timeouts. When using PBS/LSF/SGE/Condor plugins in such cases the workflow
may crash because it cannot retrieve the node result. Setting the job_finished_timeout can help:
workflow.config[’execution’][’job_finished_timeout’] = 65

1.9 DataGrabber and DataSink explained

In this chapter we will try to explain the concepts behind DataGrabber and DataSink.

1.9.1 Why do we need these interfaces?
A typical workflow takes data as input and produces data as the result of one or more operations. One can set
the data required by a workflow directly as illustrated below.

from fsl_tutorial2 import preproc
preproc.base_dir = os.path.abspath('.')
preproc.inputs.inputspec.func = os.path.abspath('data/s1/f3.nii')
preproc.inputs.inputspec.struct = os.path.abspath('data/s1/struct.nii')
preproc.run()

Typical neuroimaging studies require running workflows on multiple subjects or different parameterizations of
algorithms. One simple approach to that would be to simply iterate over subjects.

from fsl_tutorial2 import preproc
for name in subjects:
preproc.base_dir = os.path.abspath('.')
preproc.inputs.inputspec.func = os.path.abspath('data/%s/f3.nii'%name)
preproc.inputs.inputspec.struct = os.path.abspath('data/%s/struct.nii'%name)
preproc.run()

However, in the context of complex workflows and given that users typically arrange their imaging and other data
in a semantically hierarchical data store, an alternative mechanism for reading and writing the data generated by
a workflow is often necessary. As the names suggest DataGrabber is used to get at data stored in a shared file
system while DataSink is used to store the data generated by a workflow into a hierarchical structure on disk.

1.9.2 DataGrabber
DataGrabber is an interface for collecting files from hard drive. It is very flexible and supports almost any file
organization of your data you can imagine.
You can use it as a trivial use case of getting a fixed file. By default, DataGrabber stores its outputs in a field
called outfiles.

import nipype.interfaces.io as nio
datasource1 = nio.DataGrabber()
datasource1.inputs.base_directory = os.getcwd()
datasource1.inputs.template = 'data/s1/f3.nii'
results = datasource1.run()

Or you can get at all uncompressed NIfTI files starting with the letter ‘f’ in all directories starting with the letter
‘s’.

1.9. DataGrabber and DataSink explained 33

nipype Documentation, Release 0.11.0

datasource2.inputs.base_directory = '/mass'
datasource2.inputs.template = 'data/s*/f*.nii'

Two special inputs were used in these previous cases. The input base_directory indicates in which directory to
search, while the input template indicates the string template to match. So in the previous case datagrabber is
looking for path matches of the form /mass/data/s*/f*.

Note: When used with wildcards (e.g., s* and f* above) DataGrabber does not return data in sorted order. In
order to force it to return data in sorted order, one needs to set the input sorted = True. However, when explicitly
specifying an order as we will see below, sorted should be set to False.

More useful cases arise when the template can be filled by other inputs. In the example below, we define an
input field for datagrabber called run. This is then used to set the template (see %d in the template).

datasource3 = nio.DataGrabber(infields=['run'])
datasource3.inputs.base_directory = os.getcwd()
datasource3.inputs.template = 'data/s1/f%d.nii'
datasource3.inputs.run = [3, 7]

This will return files basedir/data/s1/f3.nii and basedir/data/s1/f7.nii. We can take this a step further and pair
subjects with runs.

datasource4 = nio.DataGrabber(infields=['subject_id', 'run'])
datasource4.inputs.template = 'data/%s/f%d.nii'
datasource4.inputs.run = [3, 7]
datasource4.inputs.subject_id = ['s1', 's3']

This will return files basedir/data/s1/f3.nii and basedir/data/s3/f7.nii.

A more realistic use-case

In a typical study one often wants to grab different files for a given subject and store them in semantically
meaningful outputs. In the following example, we wish to retrieve all the functional runs and the structural
image for the subject ‘s1’.

datasource = nio.DataGrabber(infields=['subject_id'], outfields=['func', 'struct'])
datasource.inputs.base_directory = 'data'
datasource.inputs.template = '*'
datasource.inputs.field_template = dict(func='%s/f%d.nii',

struct='%s/struct.nii')
datasource.inputs.template_args = dict(func=[['subject_id', [3,5,7,10]]],

struct=[['subject_id']])
datasource.inputs.subject_id = 's1'

Two more fields are introduced: field_template and template_args. These fields are both dictionaries whose
keys correspond to the outfields keyword. The field_template reflects the search path for each output field, while
the template_args reflect the inputs that satisfy the template. The inputs can either be one of the named inputs
specified by the infields keyword arg or it can be raw strings or integers corresponding to the template. For the
func output, the %s in the field_template is satisfied by subject_id and the %d is field in by the list of numbers.

Note: We have not set sorted to True as we want the DataGrabber to return the functional files in the order it
was specified rather than in an alphabetic sorted order.

1.9.3 DataSink
A workflow working directory is like a cache. It contains not only the outputs of various processing stages, it
also contains various extraneous information such as execution reports, hashfiles determining the input state of
processes. All of this is embedded in a hierarchical structure that reflects the iterables that have been used in the
workflow. This makes navigating the working directory a not so pleasant experience. And typically the user is

34 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

interested in preserving only a small percentage of these outputs. The DataSink interface can be used to extract
components from this cache and store it at a different location. For XNAT-based storage, see XNATSink .

Note: Unlike other interfaces, a DataSink‘s inputs are defined and created by using the workflow connect
statement. Currently disconnecting an input from the DataSink does not remove that connection port.

Let’s assume we have the following workflow.

InputNode

Realign

DataSink

The following code segment defines the DataSink node and sets the base_directory in which all outputs will be
stored. The container input creates a subdirectory within the base_directory. If you are iterating a workflow
over subjects, it may be useful to save it within a folder with the subject id.

datasink = pe.Node(nio.DataSink(), name='sinker')
datasink.inputs.base_directory = '/path/to/output'
workflow.connect(inputnode, 'subject_id', datasink, 'container')

If we wanted to save the realigned files and the realignment parameters to the same place the most intuitive
option would be:

workflow.connect(realigner, 'realigned_files', datasink, 'motion')
workflow.connect(realigner, 'realignment_parameters', datasink, 'motion')

However, this will not work as only one connection is allowed per input port. So we need to create a second
port. We can store the files in a separate folder.

workflow.connect(realigner, 'realigned_files', datasink, 'motion')
workflow.connect(realigner, 'realignment_parameters', datasink, 'motion.par')

The period (.) indicates that a subfolder called par should be created. But if we wanted to store it in the same
folder as the realigned files, we would use the .@ syntax. The @ tells the DataSink interface to not create the
subfolder. This will allow us to create different named input ports for DataSink and allow the user to store the
files in the same folder.

workflow.connect(realigner, 'realigned_files', datasink, 'motion')
workflow.connect(realigner, 'realignment_parameters', datasink, 'motion.@par')

The syntax for the input port of DataSink takes the following form:

1.9. DataGrabber and DataSink explained 35

nipype Documentation, Release 0.11.0

string[[.[@]]string[[.[@]]string] ...]
where parts between paired [] are optional.

MapNode

In order to use DataSink inside a MapNode, it’s inputs have to be defined inside the constructor using the infields
keyword arg.

Parameterization

As discussed in MapNode, iterfield, and iterables explained, one can run a workflow iterating over various inputs
using the iterables attribute of nodes. This means that a given workflow can have multiple outputs depending on
how many iterables are there. Iterables create working directory subfolders such as _iterable_name_value. The
parameterization input parameter controls whether the data stored using DataSink is in a folder structure that
contains this iterable information or not. It is generally recommended to set this to True when using multiple
nested iterables.

Substitutions

The substitutions and substitutions_regexp inputs allow users to modify the output destination path and name of
a file. Substitutions are a list of 2-tuples and are carried out in the order in which they were entered. Assuming
that the output path of a file is:

/root/container/_variable_1/file_subject_realigned.nii

we can use substitutions to clean up the output path.

datasink.inputs.substitutions = [('_variable', 'variable'),
('file_subject_', '')]

This will rewrite the file as:

/root/container/variable_1/realigned.nii

Note: In order to figure out which substitutions are needed it is often useful to run the workflow on a limited
set of iterables and then determine the substitutions.

1.10 The SelectFiles Interfaces

Nipype 0.9 introduces a new interface for intelligently finding files on the disk and feeding them into your
workflows: SelectFiles. SelectFiles is intended as a simpler alternative to the DataGrabber interface that was
discussed previously in DataGrabber and DataSink explained.
SelectFiles is built on Python format strings, which are similar to the Python string interpolation feature you are
likely already familiar with, but advantageous in several respects. Format strings allow you to replace named
sections of template strings set off by curly braces ({}), possibly filtered through a set of functions that control
how the values are rendered into the string. As a very basic example, we could write

msg = "This workflow uses {package}"

and then format it with keyword arguments:

print msg.format(package="FSL")

SelectFiles only requires that you provide templates that can be used to find your data; the actual formatting
happens behind the scenes.
Consider a basic example in which you want to select a T1 image and multple functional images for a number
of subjects. Invoking SelectFiles in this case is quite straightforward:

36 Chapter 1. User Guide

http://docs.python.org/2/library/string.html#format-string-syntax

nipype Documentation, Release 0.11.0

from nipype import SelectFiles
templates = dict(T1="data/{subject_id}/struct/T1.nii",

epi="data/{subject_id}/func/epi_run*.nii")
sf = SelectFiles(templates)

SelectFiles will take the templates dictionary and parse it to determine its own inputs and oututs. Specifically,
each name used in the format spec (here just subject_id) will become an interface input, and each key in the
dictionary (here T1 and epi) will become interface outputs. The templates dictionary thus succinctly links the
node inputs to the appropriate outputs. You’ll also note that, as was the case with DataGrabber, you can use
basic glob syntax to match multiple files for a given output field. Additionally, any of the conversions outlined
in the Python documentation for format strings can be used in the templates.
There are a few other options that help make SelectFiles flexible enough to deal with any situation where you
need to collect data. Like DataGrabber, SelectFiles has a base_directory parameter that allows you to specify
a path that is common to all of the values in the templates dictionary. Additionally, as glob does not return a
sorted list, there is also a sort_filelist option, taking a boolean, to control whether sorting should be applied (it
is True by default).
The final input is force_lists, which controls how SelectFiles behaves in cases where only a single file matches
the template. The default behavior is that when a template matches multiple files they are returned as a list,
while a single file is returned as a string. There may be situations where you want to force the outputs to always
be returned as a list (for example, you are writing a workflow that expects to operate on several runs of data,
but some of your subjects only have a single run). In this case, force_lists can be used to tune the outputs of the
interface. You can either use a boolean value, which will be applied to every output the interface has, or you can
provide a list of the output fields that should be coerced to a list. Returning to our basic example, you may want
to ensure that the epi files are returned as a list, but you only ever will have a single T1 file. In this case, you
would do

sf = SelectFiles(templates, force_lists=["epi"])

1.11 The Function Interface

Most Nipype interfaces provide access to external programs, such as FSL binaries or SPM routines. However, a
special interface, nipype.interfaces.utility.Function, allows you to wrap arbitrary Python code
in the Interface framework and seamlessly integrate it into your workflows.

1.11.1 A Simple Function Interface
The most important component of a working Function interface is a Python function. There are several ways
to associate a function with a Function interface, but the most common way will involve functions you code
yourself as part of your Nipype scripts. Consider the following function:

def add_two(val):
return val + 2

This simple function takes a value, adds 2 to it, and returns that new value.
Just as Nipype interfaces have inputs and outputs, Python functions have inputs, in the form of parameters or
arguments, and outputs, in the form of their return values. When you define a Function interface object with
an existing function, as in the case of add_two() above, you must pass the constructor information about the
function’s inputs, its outputs, and the function itself. For example,

from nipype.interfaces.utility import Function
add_two_interface = Function(input_names=["val"],

output_names=["out_val"],
function=add_two)

Then you can set the inputs and run just as you would with any other interface:

1.11. The Function Interface 37

http://docs.python.org/2.7/library/glob.html

nipype Documentation, Release 0.11.0

add_two_interface.inputs.val = 2
res = add_two_interface.run()
print res.outputs.out_val

Which would print 4.
Note that, if you are working interactively, the Function interface is unable to use functions that are defined
within your interpreter session. (Specifically, it can’t use functions that live in the __main__ namespace).

1.11.2 Using External Packages
Chances are, you will want to write functions that do more complicated processing, particularly using the grow-
ing stack of Python packages geared towards neuroimaging, such as Nibabel, Nipy, or PyMVPA.
While this is completely possible (and, indeed, an intended use of the Function interface), it does come with one
important constraint. The function code you write is executed in a standalone environment, which means that
any external functions or classes you use have to be imported within the function itself:

def get_n_trs(in_file):
import nibabel
f = nibabel.load(in_file)
return f.shape[-1]

Without explicitly importing Nibabel in the body of the function, this would fail.
Alternatively, it is possible to provide a list of strings corresponding to the imports needed to execute a function
as a parameter of the Function constructor. This allows for the use of external functions that do not import all
external definitions inside the function body.

1.11.3 Hello World - Function interface in a workflow
Contributed by: Hänel Nikolaus Valentin
The following snippet of code demonstrates the use of the function interface in the context of a workflow. Note
the use of import os within the function as well as returning the absolute path from the Hello function. The
import inside is necessary because functions are coded as strings and do not have to be on the PYTHONPATH.
However any function called by this function has to be available on the PYTHONPATH. The absolute path
is necessary because all workflow nodes are executed in their own directory and therefore there is no way of
determining that the input file came from a different directory:

import nipype.pipeline.engine as pe
from nipype.interfaces.utility import Function

def Hello():
import os
from nipype import logging
iflogger = logging.getLogger('interface')
message = "Hello "
file_name = 'hello.txt'
iflogger.info(message)
with open(file_name, 'w') as fp:

fp.write(message)
return os.path.abspath(file_name)

def World(in_file):
from nipype import logging
iflogger = logging.getLogger('interface')
message = "World!"
iflogger.info(message)
with open(in_file, 'a') as fp:

fp.write(message)

38 Chapter 1. User Guide

http://nipy.org/nibabel/
http://nipy.org
http://www.pymvpa.org

nipype Documentation, Release 0.11.0

hello = pe.Node(name='hello',
interface=Function(input_names=[],

output_names=['out_file'],
function=Hello))

world = pe.Node(name='world',
interface=Function(input_names=['in_file'],

output_names=[],
function=World))

pipeline = pe.Workflow(name='nipype_demo')
pipeline.connect([(hello, world, [('out_file', 'in_file')])])
pipeline.run()
pipeline.write_graph(graph2use='flat')

1.11.4 Advanced Use
To use an existing function object (as we have been doing so far) with a Function interface, it must be passed to
the constructor. However, it is also possible to dynamically set how a Function interface will process its inputs
using the special function_str input.
This input takes not a function object, but actually a single string that can be parsed to define a function. In the
equivalent case to our example above, the string would be

add_two_str = "def add_two(val):\n return val + 2\n"

Unlike when using a function object, this input can be set like any other, meaning that you could write a function
that outputs different function strings depending on some run-time contingencies, and connect that output the
the function_str input of a downstream Function interface.

1.12 MapNode, iterfield, and iterables explained

In this chapter we will try to explain the concepts behind MapNode, iterfield, and iterables.

1.12.1 MapNode and iterfield
Imagine that you have a list of items (lets say files) and you want to execute the same node on them (for example
some smoothing or masking). Some nodes accept multiple files and do exactly the same thing on them, but some
don’t (they expect only one file). MapNode can solve this problem. Imagine you have the following workflow:

1.12. MapNode, iterfield, and iterables explained 39

nipype Documentation, Release 0.11.0

A

B

C

Node “A” outputs a list of files, but node “B” accepts only one file. Additionally “C” expects a list of files. What
you would like is to run “B” for every file in the output of “A” and collect the results as a list and feed it to “C”.
Something like this:

A

B1 B2 B3 Bn

C

The code to achieve this is quite simple

import nipype.pipeline.engine as pe
a = pe.Node(interface=A(), name="a")
b = pe.MapNode(interface=B(), name="b", iterfield=['in_file'])
c = pe.Node(interface=C(), name="c")

my_workflow = pe.Workflow(name="my_workflow")

40 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

my_workflow.connect([(a,b,[('out_files','in_file')]),
(b,c,[('out_file','in_files')])
])

assuming that interfaces “A” and “C” have one input “in_files” and one output “out_files” (both lists of files).
Interface “B” has single file input “in_file” and single file output “out_file”.
You probably noticed that you connect nodes as if “B” could accept and output list of files. This is because
it is wrapped using MapNode instead of Node. This special version of node will (under the bonnet) create an
instance of “B” for every item in the list from the input. The compulsory argument “iterfield” defines which
input should it iterate over (for example in single file smooth interface you would like to iterate over input files
not the smoothing width). At the end outputs are collected into a list again. In other words this is map and
reduce scenario.
You might have also noticed that the iterfield arguments expects a list of input names instead of just one name.
This suggests that there can be more than one! Even though a bit confusing this is true. You can specify more
than one input to iterate over but the lists that you provide (for all the inputs specified in iterfield) have to have
the same length. MapNode will then pair the parameters up and run the first instance with first set of parameters
and second with second set of parameters. For example, this code:

b = pe.MapNode(interface=B(), name="b", iterfield=['in_file', 'n'])
b.inputs.in_file = ['file', 'another_file', 'different_file']
b.inputs.n = [1,2,3]
b.run()

is almost the same as running

b1 = pe.Node(interface=B(), name="b1")
b1.inputs.in_file = 'file'
b1.inputs.n = 1

b2 = pe.Node(interface=B(), name="b2")
b2.inputs.in_file = 'another_file'
b2.inputs.n = 2

b3 = pe.Node(interface=B(), name="b3")
b3.inputs.in_file = 'different_file'
b3.inputs.n = 3

It is a rarely used feature, but you can sometimes find it useful.
In more advanced applications it is useful to be able to iterate over items of nested lists (for example
[[1,2],[3,4]]). MapNode allows you to do this with the “nested=True” parameter. Outputs will preserve the
same nested structure as the inputs.

1.12.2 Iterables
Now imagine a different scenario. You have your workflow as before

1.12. MapNode, iterfield, and iterables explained 41

nipype Documentation, Release 0.11.0

A

B

C

and there are three possible values of one of the inputs node “B” you would like to investigate (for example
width of 2,4, and 6 pixels of a smoothing node). You would like to see how different parameters in node “B”
would influence everything that depends on its outputs (node “C” in our example). Therefore the new graph
should look like this:

A

B1 B2 B3

C1 C2 C3

Of course you can do it manually by creating copies of all the nodes for different parameter set, but this can
be very time consuming, especially when there are more than one node taking inputs from “B”. Luckily nipype
supports this scenario! Its called iterables and and you use it this way:

import nipype.pipeline.engine as pe
a = pe.Node(interface=A(), name="a")
b = pe.Node(interface=B(), name="b")

42 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

b.iterables = ("n", [1, 2, 3])
c = pe.Node(interface=C(), name="c")

my_workflow = pe.Workflow(name="my_workflow")
my_workflow.connect([(a,b,[('out_file','in_file')]),

(b,c,[('out_file','in_file')])
])

Assuming that you want to try out values 1, 2, and 3 of input “n” of the node “B”. This will also create three
different versions of node “C” - each with inputs from instances of node “C” with different values of “n”.
Additionally, you can set multiple iterables for a node with a list of tuples in the above format.
Iterables are commonly used to execute the same workflow for many subjects. Usually one parametrises Data-
Grabber node with subject ID. This is achieved by connecting an IdentityInterface in front of DataGrabber.
When you set iterables of the IdentityInterface to the list of subjects IDs, the same workflow will be executed
for every subject. See examples/fmri_spm to see this pattern in action.

1.13 JoinNode, synchronize and itersource

The previous MapNode, iterfield, and iterables explained chapter described how to fork and join nodes using
MapNode and iterables. In this chapter, we introduce features which build on these concepts to add workflow
flexibility.

1.13.1 JoinNode, joinsource and joinfield
A nipype.pipeline.engine.JoinNode generalizes MapNode to operate in conjunction with an up-
stream iterable node to reassemble downstream results, e.g.:

A

B1 B2 B3

C1

D

C2 C3

1.13. JoinNode, synchronize and itersource 43

nipype Documentation, Release 0.11.0

The code to achieve this is as follows:

import nipype.pipeline.engine as pe
a = pe.Node(interface=A(), name="a")
b = pe.Node(interface=B(), name="b")
b.iterables = ("in_file", images)
c = pe.Node(interface=C(), name="c")
d = pe.JoinNode(interface=D(), joinsource="b",

joinfield="in_files", name="d")

my_workflow = pe.Workflow(name="my_workflow")
my_workflow.connect([(a,b,[('subject','subject')]),

(b,c,[('out_file','in_file')])
(c,d,[('out_file','in_files')])
])

This example assumes that interface “A” has one output subject, interface “B” has two inputs subject and in_file
and one output out_file, interface “C” has one input in_file and one output out_file, and interface D has one list
input in_files. The images variable is a list of three input image file names.
As with iterables and the MapNode iterfield, the joinfield can be a list of fields. Thus, the declaration in the
previous example is equivalent to the following:

d = pe.JoinNode(interface=D(), joinsource="b",
joinfield=["in_files"], name="d")

The joinfield defaults to all of the JoinNode input fields, so the declaration is also equivalent to the following:

d = pe.JoinNode(interface=D(), joinsource="b", name="d")

In this example, the node “c” out_file outputs are collected into the JoinNode “d” in_files input list. The in_files
order is the same as the upstream “b” node iterables order.
The JoinNode input can be filtered for unique values by specifying the unique flag, e.g.:

d = pe.JoinNode(interface=D(), joinsource="b", unique=True, name="d")

1.13.2 synchronize
The nipype.pipeline.engine.Node iterables parameter can be be a single field or a list of fields. If it
is a list, then execution is performed over all permutations of the list items. For example:

b.iterables = [("m", [1, 2]), ("n", [3, 4])]

results in the execution graph:

44 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

A

B13 B14 B23 B24

C

where “B13” has inputs m = 1, n = 3, “B14” has inputs m = 1, n = 4, etc.
The synchronize parameter synchronizes the iterables lists, e.g.:

b.iterables = [("m", [1, 2]), ("n", [3, 4])]
b.synchronize = True

results in the execution graph:

A

B13 B24

C

where the iterable inputs are selected in lock-step by index, i.e.:
(m, n) = (1, 3) and (2, 4)
for “B13” and “B24”, resp.

1.13. JoinNode, synchronize and itersource 45

nipype Documentation, Release 0.11.0

1.13.3 itersource
The itersource feature allows you to expand a downstream iterable based on a mapping of an upstream iterable.
For example:

a = pe.Node(interface=A(), name="a")
b = pe.Node(interface=B(), name="b")
b.iterables = ("m", [1, 2])
c = pe.Node(interface=C(), name="c")
d = pe.Node(interface=D(), name="d")
d.itersource = ("b", "m")
d.iterables = [("n", {1:[3,4], 2:[5,6]})]
my_workflow = pe.Workflow(name="my_workflow")
my_workflow.connect([(a,b,[('out_file','in_file')]),

(b,c,[('out_file','in_file')])
(c,d,[('out_file','in_file')])
])

results in the execution graph:

A

B1 B2

C1

D13 D14

C2

D25 D26

In this example, all interfaces have input in_file and output out_file. In addition, interface “B” has input m and
interface “D” has input n. A Python dictionary associates the “b” node input value with the downstream “d”
node n iterable values.
This example can be extended with a summary JoinNode:

e = pe.JoinNode(interface=E(), joinsource="d",
joinfield="in_files", name="e")

my_workflow.connect(d, 'out_file',
e, 'in_files')

resulting in the graph:

46 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

A

B1 B2

C1

D13 D14

E

C2

D25 D26

The combination of iterables, MapNode, JoinNode, synchronize and itersource enables the creation of arbitrarily
complex workflow graphs. The astute workflow builder will recognize that this flexibility is both a blessing and
a curse. These advanced features are handy additions to the Nipype toolkit when used judiciously.

1.14 Model Specification for First Level fMRI Analysis

Nipype provides a general purpose model specification mechanism with specialized subclasses for package
specific extensions.

1.14.1 General purpose model specification
The SpecifyModel provides a generic mechanism for model specification. A mandatory input called sub-
ject_info provides paradigm specification for each run corresponding to a subject. This has to be in the form of
a Bunch or a list of Bunch objects (one for each run). Each Bunch object contains the following attribules.

Required for most designs

• conditions : list of names
• onsets : lists of onsets corresponding to each condition

1.14. Model Specification for First Level fMRI Analysis 47

nipype Documentation, Release 0.11.0

• durations [lists of durations corresponding to each condition. Should be] left to a single 0 if all events are
being modelled as impulses.

Optional

• regressor_names : list of names corresponding to each column. Should be None if automatically assigned.
• regressors : list of lists. values for each regressor - must correspond to the number of volumes in the functional

run
• amplitudes [lists of amplitudes for each event. This will be ignored by] SPM’s Level1Design.

The following two (tmod, pmod) will be ignored by any Level1Design class other than SPM:
• tmod [lists of conditions that should be temporally modulated. Should] default to None if not being used.
• pmod [list of Bunch corresponding to conditions]

name : name of parametric modulator
param : values of the modulator
poly : degree of modulation

An example Bunch definition:

from nipype.interfaces.base import Bunch
condnames = ['Tapping', 'Speaking', 'Yawning']
event_onsets = [[0, 10, 50], [20, 60, 80], [30, 40, 70]]
durations = [[0],[0],[0]]

subject_info = Bunch(conditions=condnames,
onsets = event_onsets,
durations = durations)

Alternatively, you can provide condition, onset, duration and amplitude information through event files. The
event files have to be in 1,2 or 3 column format with the columns corresponding to Onsets, Durations and Ampli-
tudes and they have to have the name event_name.run<anything else> e.g.: Words.run001.txt. The event_name
part will be used to create the condition names. Words.run001.txt may look like:

Word Onsets Durations
0 10
20 10
...

or with amplitudes:

Word Onsets Durations Amplitudes
0 10 1
20 10 1
...

Together with this information, one needs to specify:
• whether the durations and event onsets are specified in terms of scan volumes or secs.
• the high-pass filter cutoff,
• the repetition time per scan
• functional data files corresponding to each run.

Optionally you can specify realignment parameters, outlier indices. Outlier files should contain a list of numbers,
one per row indicating which scans should not be included in the analysis. The numbers are 0-based.

1.14.2 SPM specific attributes
in addition to the generic specification options, several SPM specific options can be provided. In particular, the
subject_info function can provide temporal and parametric modulators in the Bunch attributes tmod and pmod.
The following example adds a linear parametric modulator for speaking rate for the events specified earlier:

pmod = [None, Bunch(name=['Rate'], param=[[.300, .500, .600]],
poly=[1]), None]

48 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

subject_info = Bunch(conditions=condnames,
onsets = event_onsets,
durations = durations,
pmod = pmod)

SpecifySPMModel also allows specifying additional components. If you have a study with multiple runs,
you can choose to concatenate conditions from different runs. by setting the input option concatenate_runs to
True. You can also choose to set the output options for this class to be in terms of ‘scans’.

1.14.3 Sparse model specification
In addition to standard models, SpecifySparseModel allows model generation for sparse and sparse-
clustered acquisition experiments. Details of the model generation and utility are provided in Ghosh et al.
(2009) OHBM 2009.

1.15 Saving Workflows and Nodes to a file (experimental)

On top of the standard way of saving (i.e. serializing) objects in Python (see pickle) Nipype provides methods
to turn Workflows and nodes into human readable code. This is useful if you want to save a Workflow that you
have generated on the fly for future use.
To generate Python code for a Workflow use the export method:

from nipype.interfaces.fsl import BET, ImageMaths
from nipype.pipeline.engine import Workflow, Node, MapNode, format_node
from nipype.interfaces.utility import Function, IdentityInterface

bet = Node(BET(), name='bet')
bet.iterables = ('frac', [0.3, 0.4])

bet2 = MapNode(BET(), name='bet2', iterfield=['infile'])
bet2.iterables = ('frac', [0.4, 0.5])

maths = Node(ImageMaths(), name='maths')

def testfunc(in1):
"""dummy func
"""
out = in1 + 'foo' + "out1"
return out

funcnode = Node(Function(input_names=['a'], output_names=['output'], function=testfunc),
name='testfunc')

funcnode.inputs.in1 = '-sub'
func = lambda x: x

inode = Node(IdentityInterface(fields=['a']), name='inode')

wf = Workflow('testsave')
wf.add_nodes([bet2])
wf.connect(bet, 'mask_file', maths, 'in_file')
wf.connect(bet2, ('mask_file', func), maths, 'in_file2')
wf.connect(inode, 'a', funcnode, 'in1')
wf.connect(funcnode, 'output', maths, 'op_string')

wf.export()

This will create a file “outputtestsave.py” with the following content:

1.15. Saving Workflows and Nodes to a file (experimental) 49

http://dl.dropbox.com/u/363467/OHBM2009_HRF.pdf
http://dl.dropbox.com/u/363467/OHBM2009_HRF.pdf
http://docs.python.org/2/library/pickle.html

nipype Documentation, Release 0.11.0

from nipype.pipeline.engine import Workflow, Node, MapNode
from nipype.interfaces.utility import IdentityInterface
from nipype.interfaces.utility import Function
from nipype.utils.misc import getsource
from nipype.interfaces.fsl.preprocess import BET
from nipype.interfaces.fsl.utils import ImageMaths
Functions
func = lambda x: x
Workflow
testsave = Workflow("testsave")
Node: testsave.inode
inode = Node(IdentityInterface(fields=['a'], mandatory_inputs=True), name="inode")
Node: testsave.testfunc
testfunc = Node(Function(input_names=['a'], output_names=['output']), name="testfunc")
def testfunc_1(in1):

"""dummy func
"""
out = in1 + 'foo' + "out1"
return out

testfunc.inputs.function_str = getsource(testfunc_1)
testfunc.inputs.ignore_exception = False
testfunc.inputs.in1 = '-sub'
testsave.connect(inode, "a", testfunc, "in1")
Node: testsave.bet2
bet2 = MapNode(BET(), iterfield=['infile'], name="bet2")
bet2.iterables = ('frac', [0.4, 0.5])
bet2.inputs.environ = {'FSLOUTPUTTYPE': 'NIFTI_GZ'}
bet2.inputs.ignore_exception = False
bet2.inputs.output_type = 'NIFTI_GZ'
bet2.inputs.terminal_output = 'stream'
Node: testsave.bet
bet = Node(BET(), name="bet")
bet.iterables = ('frac', [0.3, 0.4])
bet.inputs.environ = {'FSLOUTPUTTYPE': 'NIFTI_GZ'}
bet.inputs.ignore_exception = False
bet.inputs.output_type = 'NIFTI_GZ'
bet.inputs.terminal_output = 'stream'
Node: testsave.maths
maths = Node(ImageMaths(), name="maths")
maths.inputs.environ = {'FSLOUTPUTTYPE': 'NIFTI_GZ'}
maths.inputs.ignore_exception = False
maths.inputs.output_type = 'NIFTI_GZ'
maths.inputs.terminal_output = 'stream'
testsave.connect(bet2, ('mask_file', func), maths, "in_file2")
testsave.connect(bet, "mask_file", maths, "in_file")
testsave.connect(testfunc, "output", maths, "op_string")

The file is ready to use and includes all the necessary imports.

1.16 Using SPM with MATLAB Common Runtime

In order to use the standalone MCR version of spm, you need to ensure that the following commands are
executed at the beginning of your script:

from nipype.interfaces import spm
matlab_cmd = '/path/to/run_spm8.sh /path/to/Compiler_Runtime/v713/ script'
spm.SPMCommand.set_mlab_paths(matlab_cmd=matlab_cmd, use_mcr=True)

50 Chapter 1. User Guide

nipype Documentation, Release 0.11.0

you can test by calling:

spm.SPMCommand().version

If you want to enforce the standalone MCR version of spm for nipype globally, you can do so by setting the
following environment variables:
SPMMCRCMD Specifies the command to use to run the spm standalone MCR version. You may still override

the command as described above.
FORCE_SPMMCR Set this to any value in order to enforce the use of spm standalone MCR version in nipype

globally. Technically, this sets the use_mcr flag of the spm interface to True.
Information about the MCR version of SPM8 can be found at:
http://en.wikibooks.org/wiki/SPM/Standalone

1.17 Using MIPAV, JIST, and CBS Tools

If you are trying to use MIPAV, JIST or CBS Tools interfaces you need to configure CLASSPATH environmental
variable correctly. It needs to include extensions shipped with MIPAV, MIPAV itself and MIPAV plugins. For
example:
In order to use the standalone MCR version of spm, you need to ensure that the following commands are
executed at the beginning of your script:

location of additional JAVA libraries to use
JAVALIB=/Applications/mipav/jre/Contents/Home/lib/ext/

location of the MIPAV installation to use
MIPAV=/Applications/mipav
location of the plugin installation to use
please replace 'ThisUser' by your user name
PLUGINS=/Users/ThisUser/mipav/plugins

export CLASSPATH=$JAVALIB/*:$MIPAV:$MIPAV/lib/*:$PLUGINS

1.18 Running Nipype Interfaces from the command line
(nipype_cmd)

The primary use of Nipype is to build automated non-interactive pipelines. However, sometimes there is a
need to run some interfaces quickly from the command line. This is especially useful when running Interfaces
wrapping code that does not have command line equivalents (nipy or SPM). Being able to run Nipype interfaces
opens new possibilities such as inclusion of SPM processing steps in bash scripts.
To run Nipype Interafces you need to use the nipype_cmd tool that should already be installed. The tool allows
you to list Interfaces available in a certain package:

$nipype_cmd nipype.interfaces.nipy

Available Interfaces:
SpaceTimeRealigner
Similarity
ComputeMask
FitGLM
EstimateContrast
FmriRealign4d

After selecting a particular Interface you can learn what inputs it requires:

$nipype_cmd nipype.interfaces.nipy ComputeMask --help

1.17. Using MIPAV, JIST, and CBS Tools 51

http://en.wikibooks.org/wiki/SPM/Standalone
http://nipy.org/nipype/

nipype Documentation, Release 0.11.0

usage:nipype_cmd nipype.interfaces.nipy ComputeMask [-h] [--M M] [--cc CC]
[--ignore_exception IGNORE_EXCEPTION]
[--m M]
[--reference_volume REFERENCE_VOLUME]
mean_volume

Run ComputeMask

positional arguments:
mean_volume mean EPI image, used to compute the threshold for the

mask

optional arguments:
-h, --help show this help message and exit
--M M upper fraction of the histogram to be discarded
--cc CC Keep only the largest connected component
--ignore_exception IGNORE_EXCEPTION

Print an error message instead of throwing an
exception in case the interface fails to run

--m M lower fraction of the histogram to be discarded
--reference_volume REFERENCE_VOLUME

reference volume used to compute the mask. If none is
give, the mean volume is used.

Finally you can run run the Interface:

$nipype_cmd nipype.interfaces.nipy ComputeMask mean.nii.gz

All that from the command line without having to start python interpreter manually.

52 Chapter 1. User Guide

CHAPTER 2

Changes in Nipype

2.1 Release 0.11.0 (September 15, 2015)

• API: Change how hash values are computed (https://github.com/nipy/nipype/pull/1174)
• ENH: New algorithm: mesh.WarpPoints applies displacements fields to point sets

(https://github.com/nipy/nipype/pull/889).
• ENH: New interfaces for MRTrix3 (https://github.com/nipy/nipype/pull/1126)
• ENH: New option in afni.3dRefit - zdel, ydel, zdel etc. (https://github.com/nipy/nipype/pull/1079)
• FIX: ants.Registration composite transform outputs are no longer returned as lists

(https://github.com/nipy/nipype/pull/1183)
• BUG: ANTs Registration interface failed with multi-modal inputs (https://github.com/nipy/nipype/pull/1176)

(https://github.com/nipy/nipype/issues/1175)
• ENH: dipy.TrackDensityMap interface now accepts a reference image

(https://github.com/nipy/nipype/pull/1091)
• FIX: Bug in XFibres5 (https://github.com/nipy/nipype/pull/1168)
• ENH: Attempt to use hard links for data sink. (https://github.com/nipy/nipype/pull/1161)
• FIX: Updates to SGE Plugins (https://github.com/nipy/nipype/pull/1129)
• ENH: Add ants JointFusion() node with testing (https://github.com/nipy/nipype/pull/1160)
• ENH: Add –float option for antsRegistration calls (https://github.com/nipy/nipype/pull/1159)
• ENH: Added interface to simulate DWIs using the multi-tensor model (https://github.com/nipy/nipype/pull/1085)
• ENH: New interface for FSL fslcpgeom utility (https://github.com/nipy/nipype/pull/1152)
• ENH: Added SLURMGraph plugin for submitting jobs to SLURM with dependencies

(https://github.com/nipy/nipype/pull/1136)
• FIX: Enable absolute path definitions in DCMStack (https://github.com/nipy/nipype/pull/1089, replaced

by https://github.com/nipy/nipype/pull/1093)
• ENH: New mesh.MeshWarpMaths to operate on surface-defined warpings

(https://github.com/nipy/nipype/pull/1016)
• FIX: Refactor P2PDistance, change name to ComputeMeshWarp, add regression tests, fix bug in area

weighted distance, and added optimizations (https://github.com/nipy/nipype/pull/1016)
• ENH: Add an option not to resubmit Nodes that finished running when using SGEGraph

(https://github.com/nipy/nipype/pull/1002)
• FIX: FUGUE is now properly listing outputs. (https://github.com/nipy/nipype/pull/978)
• ENH: Improved FieldMap-Based (FMB) workflow for correction of susceptibility distortions in EPI seqs.

(https://github.com/nipy/nipype/pull/1019)
• FIX: In the FSLXcommand _list_outputs function fixed for loop range

(https://github.com/nipy/nipype/pull/1071)
• ENH: Dropped support for now 7 years old Python 2.6 (https://github.com/nipy/nipype/pull/1069)
• FIX: terminal_output is not mandatory anymore (https://github.com/nipy/nipype/pull/1070)
• ENH: Added “nipype_cmd” tool for running interfaces from the command line

(https://github.com/nipy/nipype/pull/795)
• FIX: Fixed Camino output naming (https://github.com/nipy/nipype/pull/1061)
• ENH: Add the average distance to ErrorMap (https://github.com/nipy/nipype/pull/1039)

53

https://github.com/nipy/nipype/pull/1174
https://github.com/nipy/nipype/pull/889
https://github.com/nipy/nipype/pull/1126
https://github.com/nipy/nipype/pull/1079
https://github.com/nipy/nipype/pull/1183
https://github.com/nipy/nipype/pull/1176
https://github.com/nipy/nipype/issues/1175
https://github.com/nipy/nipype/pull/1091
https://github.com/nipy/nipype/pull/1168
https://github.com/nipy/nipype/pull/1161
https://github.com/nipy/nipype/pull/1129
https://github.com/nipy/nipype/pull/1160
https://github.com/nipy/nipype/pull/1159
https://github.com/nipy/nipype/pull/1085
https://github.com/nipy/nipype/pull/1152
https://github.com/nipy/nipype/pull/1136
https://github.com/nipy/nipype/pull/1089
https://github.com/nipy/nipype/pull/1093
https://github.com/nipy/nipype/pull/1016
https://github.com/nipy/nipype/pull/1016
https://github.com/nipy/nipype/pull/1002
https://github.com/nipy/nipype/pull/978
https://github.com/nipy/nipype/pull/1019
https://github.com/nipy/nipype/pull/1071
https://github.com/nipy/nipype/pull/1069
https://github.com/nipy/nipype/pull/1070
https://github.com/nipy/nipype/pull/795
https://github.com/nipy/nipype/pull/1061
https://github.com/nipy/nipype/pull/1039

nipype Documentation, Release 0.11.0

• ENH: Inputs with name_source can be now chained in cascade (https://github.com/nipy/nipype/pull/938)
• ENH: Improve JSON interfaces: default settings when reading and consistent output creation when

writing (https://github.com/nipy/nipype/pull/1047)
• FIX: AddCSVRow problems when using infields (https://github.com/nipy/nipype/pull/1028)
• FIX: Removed unused ANTS registration flag (https://github.com/nipy/nipype/pull/999)
• FIX: Amend create_tbss_non_fa() workflow to match FSL’s tbss_non_fa command.

(https://github.com/nipy/nipype/pull/1033)
• FIX: remove unused mandatory flag from spm normalize (https://github.com/nipy/nipype/pull/1048)
• ENH: Update ANTSCorticalThickness interface (https://github.com/nipy/nipype/pull/1013)
• FIX: Edge case with sparsemodels and PEP8 cleanup (https://github.com/nipy/nipype/pull/1046)
• ENH: New io interfaces for JSON files reading/writing (https://github.com/nipy/nipype/pull/1020)
• ENH: Enhanced openfmri script to support freesurfer linkage (https://github.com/nipy/nipype/pull/1037)
• BUG: matplotlib is supposed to be optional (https://github.com/nipy/nipype/pull/1003)
• FIX: Fix split_filename behaviour when path has no file component (https://github.com/nipy/nipype/pull/1035)
• ENH: Updated FSL dtifit to include option for grad non-linearities (https://github.com/nipy/nipype/pull/1032)
• ENH: Updated Camino tracking interfaces, which can now use FSL bedpostx output. New op-

tions also include choice of tracker, interpolator, stepsize and curveinterval for angle threshold
(https://github.com/nipy/nipype/pull/1029)

• FIX: Interfaces redirecting X crashed if $DISPLAY not defined (https://github.com/nipy/nipype/pull/1027)
• FIX: Bug crashed ‘make api’ (https://github.com/nipy/nipype/pull/1026)
• ENH: Updated antsIntroduction to handle RA and RI registrations (https://github.com/nipy/nipype/pull/1009)
• ENH: Updated N4BiasCorrection input spec to include weight image and spline order. Made

argument formatting consistent. Cleaned ants.segmentation according to PEP8.
(https://github.com/nipy/nipype/pull/990/files)

• ENH: SPM12 Normalize interface (https://github.com/nipy/nipype/pull/986)
• FIX: Utility interface test dir (https://github.com/nipy/nipype/pull/986)
• FIX: IPython engine directory reset after crash (https://github.com/nipy/nipype/pull/987)
• ENH: Resting state fMRI example with NiPy realignment and no SPM

(https://github.com/nipy/nipype/pull/992)
• FIX: Corrected Freesurfer SegStats _list_outputs to avoid error if summary_file is undefined (issue

#994)(https://https://github.com/nipy/nipype/pull/996)
• FIX: OpenfMRI support and FSL 5.0.7 changes (https://github.com/nipy/nipype/pull/1006)
• FIX: Output prefix in SPM Normalize with modulation (https://github.com/nipy/nipype/pull/1023)
• ENH: Usability improvements in cluster environments (https://github.com/nipy/nipype/pull/1025)
• ENH: ANTs JointFusion() (https://github.com/nipy/nipype/pull/1042)
• ENH: Added csvReader() utility (https://github.com/nipy/nipype/pull/1044)
• FIX: typo in nipype.interfaces.freesurfer.utils.py Tkregister2 (https://github.com/nipy/nipype/pull/1083)
• FIX: SSHDataGrabber outputs now return full path to the grabbed/downloaded files.

(https://github.com/nipy/nipype/pull/1086)
• FIX: Add QA output for TSNR to resting workflow (https://github.com/nipy/nipype/pull/1088)
• FIX: Change N4BiasFieldCorrection to use short tag for dimensionality (backward compatible)

(https://github.com/nipy/nipype/pull/1096)
• ENH: Added -newgrid input to Warp in AFNI (3dWarp wrapper) (https://github.com/nipy/nipype/pull/1128)
• FIX: Fixed AFNI Copy interface to use positional inputs as required (https://github.com/nipy/nipype/pull/1131)
• ENH: Added a check in Dcm2nii to check if nipype created the config.ini file and remove if true

(https://github.com/nipy/nipype/pull/1132)
• ENH: Use a while loop to wait for Xvfb (up to a max wait time “xvfb_max_wait” in config file, default 10)

(https://github.com/nipy/nipype/pull/1142)

2.2 Release 0.10.0 (October 10, 2014)

• ENH: New miscelaneous interfaces: SplitROIs (mapper), MergeROIs (reducer) to enable parallel pro-
cessing of very large images.

54 Chapter 2. Changes in Nipype

https://github.com/nipy/nipype/pull/938
https://github.com/nipy/nipype/pull/1047
https://github.com/nipy/nipype/pull/1028
https://github.com/nipy/nipype/pull/999
https://github.com/nipy/nipype/pull/1033
https://github.com/nipy/nipype/pull/1048
https://github.com/nipy/nipype/pull/1013
https://github.com/nipy/nipype/pull/1046
https://github.com/nipy/nipype/pull/1020
https://github.com/nipy/nipype/pull/1037
https://github.com/nipy/nipype/pull/1003
https://github.com/nipy/nipype/pull/1035
https://github.com/nipy/nipype/pull/1032
https://github.com/nipy/nipype/pull/1029
https://github.com/nipy/nipype/pull/1027
https://github.com/nipy/nipype/pull/1026
https://github.com/nipy/nipype/pull/1009
https://github.com/nipy/nipype/pull/990/files
https://github.com/nipy/nipype/pull/986
https://github.com/nipy/nipype/pull/986
https://github.com/nipy/nipype/pull/987
https://github.com/nipy/nipype/pull/992
https://https://github.com/nipy/nipype/pull/996
https://github.com/nipy/nipype/pull/1006
https://github.com/nipy/nipype/pull/1023
https://github.com/nipy/nipype/pull/1025
https://github.com/nipy/nipype/pull/1042
https://github.com/nipy/nipype/pull/1044
https://github.com/nipy/nipype/pull/1083
https://github.com/nipy/nipype/pull/1086
https://github.com/nipy/nipype/pull/1088
https://github.com/nipy/nipype/pull/1096
https://github.com/nipy/nipype/pull/1128
https://github.com/nipy/nipype/pull/1131
https://github.com/nipy/nipype/pull/1132
https://github.com/nipy/nipype/pull/1142

nipype Documentation, Release 0.11.0

• ENH: Updated FSL interfaces: BEDPOSTX and XFibres, former interfaces are still available with the
version suffix: BEDPOSTX4 and XFibres4. Added gpu versions of BEDPOSTX: BEDPOSTXGPU,
BEDPOSTX5GPU, and BEDPOSTX4GPU

• ENH: Added experimental support for MIPAV algorithms thorugh JIST plugins
• ENH: New dipy interfaces: Denoise, Resample
• ENH: New Freesurfer interfaces: Tkregister2 (for conversion of fsl style matrices to freesurfer format),

MRIPretess
• ENH: New FSL interfaces: WarpPoints, WarpPointsToStd, EpiReg, ProbTrackX2, WarpUtils, ConvertWarp
• ENH: New miscelaneous interfaces: AddCSVRow, NormalizeProbabilityMapSet, AddNoise
• ENH: New AFNI interfaces: Eval, Means, SVMTest, SVMTrain
• ENH: FUGUE interface has been refactored to use the name_template system, 3 examples added to

doctests, some bugs solved.
• API: Interfaces to external packages are no longer available in the top-level nipype namespace, and

must be imported directly (e.g. from nipype.interfaces import fsl).
• ENH: Support for elastix via a set of new interfaces: Registration, ApplyWarp, AnalyzeWarp,

PointsWarp, and EditTransform
• ENH: New ANTs interface: ApplyTransformsToPoints, LaplacianThickness
• ENH: New Diffusion Toolkit interface: TrackMerge
• ENH: New MRtrix interface: FilterTracks
• ENH: New metrics group in algorithms. Now Distance, Overlap, and FuzzyOverlap are found in

nipype.algorithms.metrics instead of misc. Overlap interface extended to allow files containing
multiple ROIs and volume physical units.

• ENH: New interface in algorithms.metrics: ErrorMap (a voxel-wise diff map).
• ENH: New FreeSurfer workflow: create_skullstripped_recon_flow()
• ENH: Deep revision of workflows for correction of dMRI artifacts. New dmri_preprocessing example.
• ENH: New data grabbing interface that works over SSH connections, SSHDataGrabber
• ENH: New color mode for write_graph
• ENH: You can now force MapNodes to be run serially
• ENH: Added ANTS based openfmri workflow
• ENH: MapNode now supports flattening of nested lists
• ENH: Support for headless mode using Xvfb
• ENH: nipype_display_crash has a debugging mode
• FIX: MRTrix tracking algorithms were ignoring mask parameters.
• FIX: FNIRT registration pathway and associated OpenFMRI example script
• FIX: spm12b compatibility for Model estimate
• FIX: Batch scheduler controls the number of maximum jobs properly
• FIX: Update for FSL 5.0.7 which deprecated Contrast Manager

2.3 Release 0.9.2 (January 31, 2014)

• FIX: DataFinder was broken due to a typo
• FIX: Order of DataFinder outputs was not guaranteed, it’s human sorted now
• ENH: New interfaces: Vnifti2Image, VtoMat

2.4 Release 0.9.1 (December 25, 2013)

• FIX: installation issues

2.5 Release 0.9.0 (December 20, 2013)

• ENH: SelectFiles: a streamlined version of DataGrabber
• ENH: new tools for defining workflows: JoinNode, synchronize and itersource

2.3. Release 0.9.2 (January 31, 2014) 55

nipype Documentation, Release 0.11.0

• ENH: W3C PROV support with optional RDF export built into Nipype
• ENH: Added support for Simple Linux Utility Resource Management (SLURM)
• ENH: AFNI interfaces refactor, prefix, suffix are replaced by “flexible_%s_templates”
• ENH: New SPM interfaces:

spm.ResliceToReference,
spm.DicomImport

• ENH: New AFNI interfaces:
afni.AFNItoNIFTI
afni.TCorr1D

• ENH: Several new interfaces related to Camino were added:
camino.SFPICOCalibData
camino.Conmat
camino.QBallMX
camino.LinRecon
camino.SFPeaks

One outdated interface no longer part of Camino was removed: - camino.Conmap
• ENH: Three new mrtrix interfaces were added:

mrtrix.GenerateDirections
mrtrix.FindShPeaks
mrtrix.Directions2Amplitude

• ENH: New FSL interfaces:
fsl.PrepareFieldmap
fsl.TOPUP
fsl.ApplyTOPUP
fsl.Eddy

• ENH: New misc interfaces:
FuzzyOverlap,
P2PDistance

• ENH: New workflows: nipype.workflows.dmri.fsl.epi.[fieldmap_correction&topup_correction]
• ENH: Added simplified outputname generation for command line interfaces.
• ENH: Allow ants use a single mask image
• ENH: Create configuration option for parameterizing directories with hashes
• ENH: arrange nodes by topological sort with disconnected subgraphs
• ENH: uses the nidm iri namespace for uuids
• ENH: remove old reporting webpage
• ENH: Added support for Vagrant
• API: ‘name’ is now a positional argument for Workflow, Node, and MapNode constructors
• API: SPM now defaults to SPM8 or SPM12b job format
• API: DataGrabber and SelectFiles use human (or natural) sort now
• FIX: Several fixes related to Camino interfaces:

ProcStreamlines would ignore many arguments silently (target, waypoint, exclusion ROIS, etc.)
DTLUTGen would silently round the “step”, “snr” and “trace” parameters to integers
PicoPDFs would not accept more than one lookup table
PicoPDFs default pdf did not correspond to Camino default
Track input model names were outdated (and would generate an error)
Track numpds parameter could not be set for deterministic tractography
FA created output files with erroneous extension

• FIX: Deals properly with 3d files in SPM Realign
• FIX: SPM with MCR fixed
• FIX: Cleaned up input and output spec metadata
• FIX: example openfmri script now makes the contrast spec a hashed input
• FIX: FILMGLS compatibility with FSL 5.0.5
• FIX: Freesurfer recon-all resume now avoids setting inputs
• FIX: File removal from node respects file associations img/hdr/mat, BRIK/HEAD

56 Chapter 2. Changes in Nipype

nipype Documentation, Release 0.11.0

2.6 Release 0.8.0 (May 8, 2013)

• ENH: New interfaces: nipy.Trim, fsl.GLM, fsl.SigLoss, spm.VBMSegment, fsl.InvWarp,
dipy.TensorMode

• ENH: Allow control over terminal output for commandline interfaces
• ENH: Added preliminary support for generating Python code from Workflows.
• ENH: New workflows for dMRI and fMRI pre-processing: added motion artifact correction with rota-

tion of the B-matrix, and susceptibility correction for EPI imaging using fieldmaps. Updated eddy_correct
pipeline to support both dMRI and fMRI, and new parameters.

• ENH: Minor improvements to FSL’s FUGUE and FLIRT interfaces
• ENH: Added optional dilation of parcels in cmtk.Parcellate
• ENH: Interpolation mode added to afni.Resample
• ENH: Function interface can accept a list of strings containing import statements that allow external

functions to run without their imports defined in the function body
• ENH: Allow node configurations to override master configuration
• FIX: SpecifyModel works with 3D files correctly now.

2.7 Release 0.7.0 (Dec 18, 2012)

• ENH: Add basic support for LSF plugin.
• ENH: New interfaces: ICC, Meshfix, ants.Register, C3dAffineTool, ants.JacobianDeterminant,

afni.AutoTcorrelate, DcmStack
• ENH: New workflows: ants template building (both using ‘ANTS’ and the new ‘antsRegistration’)
• ENH: New examples: how to use ANTS template building workflows (smri_ants_build_tmeplate), how

to set SGE specific options (smri_ants_build_template_new)
• ENH: added no_flatten option to Merge
• ENH: added versioning option and checking to traits
• ENH: added deprecation metadata to traits
• ENH: Slicer interfaces were updated to version 4.1

2.8 Release 0.6.0 (Jun 30, 2012)

• API: display variable no longer encoded as inputs in commandline interfaces
• ENH: input hash not modified when environment DISPLAY is changed
• ENH: support for 3d files for TSNR calculation
• ENH: Preliminary support for graph submission with SGE, PBS and Soma Workflow
• ENH: New interfaces: MySQLSink, nipy.Similarity, WatershedBEM, MRIsSmooth,

NetworkBasedStatistic, Atropos, N4BiasFieldCorrection, ApplyTransforms, fs.MakeAverageSubject,
epidewarp.fsl, WarpTimeSeriesImageMultiTransform, AVScale, mri_ms_LDA

• ENH: simple interfaces for spm
• FIX: CompCor component calculation was erroneous
• FIX: filename generation for AFNI and PRELUDE
• FIX: improved slicer module autogeneration
• FIX: added missing options for BBRegsiter
• FIX: functionality of remove_unnecessary_ouputs cleaned up
• FIX: local hash check works with appropriate inputs
• FIX: Captures all stdout from commandline programs
• FIX: Afni outputs should inherit from TraitedSpec

2.9 Release 0.5.3 (Mar 23, 2012)

• FIX: SPM model generation when output units is in scans

2.6. Release 0.8.0 (May 8, 2013) 57

nipype Documentation, Release 0.11.0

2.10 Release 0.5.2 (Mar 14, 2012)

• API: Node now allows specifying node level configuration for SGE/PBS clusters
• API: Logging to file is disabled by default
• API: New location of log file -> .nipype/nipype.cfg
• ENH: Changing logging options via config works for distributed processing
• FIX: Unittests on debian (logging and ipython)

2.11 Release 0.5 (Mar 10, 2012)

• API: FSL defaults to Nifti when OUTPUTTYPE environment variable not found
• API: By default inputs are removed from Node working directory
• API: InterfaceResult class is now versioned and stores class type not instance
• API: Added FIRST interface
• API: Added max_jobs paramter to plugin_args. limits the number of jobs executing at any given point in

time
• API: crashdump_dir is now a config execution option
• API: new config execution options for controlling hash checking, execution and logging behavior when

running in distributed mode.
• API: Node/MapNode has new attribute that allows it to run on master thread.
• API: IPython plugin now invokes IPython 0.11 or greater
• API: Canned workflows are now all under a different package structure
• API: SpecifyModel event_info renamed to event_files
• API: DataGrabber is always being rerun (unless overwrite is set to False on Node level)
• API: “stop_on_first_rerun” does not stop for DataGrabber (unless overwrite is set to True on Node level)
• API: Output prefix can be set for spm nodes (SliceTiming, Realign, Coregister, Normalize, Smooth)
• ENH: Added fsl resting state workflow based on behzadi 2007 CompCorr method.
• ENH: TSNR node produces mean and std-dev maps; allows polynomial detrending
• ENH: IdentityNodes are removed prior to execution
• ENH: Added Michael Notter’s beginner’s guide
• ENH: Added engine support for status callback functions
• ENH: SPM create warped node
• ENH: All underlying interfaces (including python ones) are now optional
• ENH: Added imperative programming option with Nodes and caching
• ENH: Added debug mode to configuration
• ENH: Results can be stored and loaded without traits exceptions
• ENH: Added concurrent log handler for distributed writing to log file
• ENH: Reporting can be turned off using config
• ENH: Added stats files to FreeSurferOutput
• ENH: Support for Condor through qsub emulation
• ENH: IdentityNode with iterable expansion takes place after remaining Identity Node removal
• ENH: Crashfile display script added
• ENH: Added FmriRealign4d node wrapped from nipy
• ENH: Added TBSS workflows and examples
• ENH: Support for openfmri data processing
• ENH: Package version check
• FIX: Fixed spm preproc workflow to cater to multiple functional runs
• FIX: Workflow outputs displays nodes with empty outputs
• FIX: SUSAN workflow works without usans
• FIX: SGE fixed for reading custom templates
• FIX: warping in SPM realign, Dartel and interpolation parameters
• FIX: Fixed voxel size parameter in freesurfer mri_convert
• FIX: 4D images in spm coregister

58 Chapter 2. Changes in Nipype

nipype Documentation, Release 0.11.0

• FIX: Works around matlab tty bug
• FIX: Overwriting connection raises exception
• FIX: Outputs are loaded from results and not stored in memory for during distributed operation
• FIX: SPM threshold uses SPM.mat name and improved error detection
• FIX: Removing directory contents works even when a node has no outputs
• FIX: DARTEL workflows will run only when SPM 8 is available
• FIX: SPM Normalize estimate field fixed
• FIX: hashmethod argument now used for calculating hash of old file
• FIX: Modelgen now allows FSL style event files

2.12 Release 0.4.1 (Jun 16, 2011)

• Minor bugfixes

2.13 Release 0.4 (Jun 11, 2011)

• API: Timestamp hashing does not use ctime anymore. Please update your hashes by running workflows
with updatehash=True option NOTE: THIS IS THE DEFAULT CONFIG NOW, so unless you updatehash,
workflows will rerun

• API: Workflow run function no longer supports (inseries, createdirsonly). Functions used in connect
string must be pickleable

• API: SPM EstimateContrast: ignore_derivs replaced by use_derivs
• API: All interfaces: added new config option ignore_exception
• API: SpecifModel no longer supports (concatenate_runs, output_specs). high_pass_filter cutoff is

mandatory (even if its set to np.inf). Additional interfaces SpecifySPMModel and SpecifySparseModel
support other types of data.

• API: fsl.DTIFit input “save” is now called “save_tensor”
• API: All inputs of IdentityInterfaces are mandatory by default. You can turn this off by specifying

mandatory_inputs=False to the constructor.
• API: fsl FILMGLS input “autocorr_estimate” is now called “autocorr_estimate_only”
• API: fsl ContrastMgr now requires access to specific files (no longer accepts the result directory)
• API: freesurfer.GLMFit input “surf” is now a boolean with three corresponding inputs – subject_id,

hemi, and surf_geo
• ENH: All commandline interfaces display stdout and stderr
• ENH: All interfaces raise exceptions on error with an option to suppress
• ENH: Supports a plugin interface for execution (current support for multiprocessing, IPython, SGE,

PBS)
• ENH: MapNode runs in parallel under IPython, SGE, MultiProc, PBS
• ENH: Optionally allows keeping only required outputs
• ENH: New interface: utility.Rename to change the name of files, optionally using python string-formatting

with inputs or regular expressions matching
• ENH: New interface: freesurfer.ApplyMask (mri_mask)
• ENH: New FSL interface – SwapDimensions (fslswapdim)
• ENH: Sparse models allow regressor scaling and temporal derivatives
• ENH: Added support for the component parts of FSL’s TBSS workflow (TBSSSkeleton and Dis-

tanceMap)
• ENH: dcm2nii interface exposes bvals, bvecs, reoriented and cropped images
• ENH: Added several higher-level interfaces to the fslmaths command:

ChangeDataType, Threshold, MeanImage, IsotropicSmooth, ApplyMask, TemporalFilter DilateImage,
ErodeImage, SpatialFilter, UnaryMaths, BinaryMaths, MultiImageMaths

• ENH: added support for networx 1.4 and improved iterable expansion
• ENH: Replaced BEDPOSTX and EddyCurrent with nipype pipelines
• ENH: Ability to create a hierarchical dot file

2.12. Release 0.4.1 (Jun 16, 2011) 59

nipype Documentation, Release 0.11.0

• ENH: Improved debugging information for rerunning nodes
• ENH: Added ‘stop_on_first_rerun’ option
• ENH: Added support for Camino
• ENH: Added support for Camino2Trackvis
• ENH: Added support for Connectome Viewer
• BF: dcm2nii interface handles gzipped files correctly
• BF: FNIRT generates proper outputs
• BF: fsl.DTIFit now properly collects tensor volume
• BF: updatehash now removes old result hash file

2.14 Release 0.3.4 (Jan 12, 2011)

• API: hash values for float use a string conversion up to the 10th decimal place.
• API: Iterables in output path will always be generated as _var1_val1_var2_val2 pairs
• ENH: Added support to nipy: GLM fit, contrast estimation and calculating mask from EPI
• ENH: Added support for manipulating surface files in Freesurfer:

projecting volume images onto the surface
smoothing along the surface
transforming a surface image from one subject to another
using tksurfer to save pictures of the surface

• ENH: Added support for flash processing using FreeSurfer
• ENH: Added support for flirt matrix in BBRegister
• ENH: Added support for FSL convert_xfm
• ENH: hashes can be updated again without rerunning all nodes.
• ENH: Added multiple regression design for FSL
• ENH: Added SPM based Analyze to Nifti converter
• ENH: Added increased support for PyXNAT
• ENH: Added support for MCR-based binary version of SPM
• ENH: Added SPM node for calculating various threshold statistics
• ENH: Added distance and dissimilarity measurements
• BF: Diffusion toolkit gets installed
• BF: Changed FNIRT interface to accept flexible lists (rather than 4-tuples) on all options specific to dif-

ferent subsampling levels

2.15 Release 0.3.3 (Sep 16, 2010)

• API: subject_id in ModelSpec is now deprecated
• API: spm.Threshold - does not need mask, beta, RPV anymore - takes only one image (stat_image - mind the

name change) - works with SPM2 SPM.mat - returns additional map - pre topological FDR
• ENH: Added support for Diffusion toolkit
• ENH: Added support for FSL slicer and overlay
• ENH: Added support for dcm2nii
• BF: DataSink properly handles lists of lists now
• BF: DataGrabber has option for raising Exception on getting empty lists
• BF: Traits logic for ‘requires’ metadata
• BF: allows workflows to be relocatable
• BF: nested workflows with connections don’t raise connection not found error
• BF: multiple workflows with identical nodenames and iterables do not create nestsed workflows

60 Chapter 2. Changes in Nipype

nipype Documentation, Release 0.11.0

2.16 Release 0.3.2 (Aug 03, 2010)

2.16.1 Enhancements
• all outputs from nodes are now pickled as part of workflow processing
• added git developer docs

2.16.2 Bugs fixed
• FreeSurfer
• Fixed bugs in SegStats doctest

2.17 Release 0.3.1 (Jul 29, 2010)

2.17.1 Bugs fixed
• FreeSurfer
• Fixed bugs in glmfit and concatenate
• Added group t-test to freesurfer tutorial

2.18 Release 0.3 (Jul 27, 2010)

2.18.1 Incompatible changes
• Complete redesign of the Interface class - heavy use of Traits.
• Changes in the engine API - added Workflow and MapNode. Compulsory name argument.

2.18.2 Features added
• General:
• Type checking of inputs and outputs using Traits from ETS.
• Support for nested workflows.
• Preliminary Slicer and AFNI support.
• New flexible DataGrabber node.
• AtlasPick and Threshold nodes.
• Preliminary support for XNAT.
• Doubled number of the tutorials.
• FSL:
• Added DTI processing nodes (note that TBSS nodes are still experimental).
• Recreated FEAT workflow.
• SPM:
• Added New Segment and many other nodes.
• Redesigned second level analysis.
• Developer

2.16. Release 0.3.2 (Aug 03, 2010) 61

http://code.enthought.com/projects/tool-suite.php

nipype Documentation, Release 0.11.0

62 Chapter 2. Changes in Nipype

CHAPTER 3

API

Release 0.11.0
Date September 15, 2015, 17:26 PDT

63

nipype Documentation, Release 0.11.0

64 Chapter 3. API

CHAPTER 4

Developer Guide

Release 0.11.0
Date September 15, 2015, 17:26 PDT

Since nipype is part of the NIPY project, we follow the same conventions documented in the NIPY Developers
Guide. For bleeding-edge version help see Nightly documentation

4.1 Interface Specifications

4.1.1 Before you start
Nipype is a young project maintained by an enthusiastic group of developers. Even though the documentation
might be sparse or cryptic at times we strongly encourage you to contact us on the official nipype developers
mailing list in case of any troubles: nipy-devel@neuroimaging.scipy.org (we are sharing a mailing list with the
nipy community therefore please add [nipype] to the messsage title).

4.1.2 Overview
We’re using the Enthought Traits package for all of our inputs and outputs. Traits allows us to validate user inputs
and provides a mechanism to handle all the special cases in a simple and concise way though metadata. With
the metadata, each input/output can have an optional set of metadata attributes (described in more detail below).
The machinery for handling the metadata is located in the base classes, so all subclasses use the same code to
handle these cases. This is in contrast to our previous code where every class defined it’s own _parse_inputs,
run and aggregate_outputs methods to handle these cases. Which of course leads to a dozen different ways to
solve the same problem.
Traits is a big package with a lot to learn in order to take full advantage of. But don’t be intimidated! To write a
Nipype Trait Specification, you only need to learn a few of the basics of Traits. Here are a few starting points in
the documentation:

• What are Traits? The Introduction in the User Manual gives a brief description of the functionality traits pro-
vides.

• Traits and metadata. The second section of the User Manual gives more details on traits and how to use them.
Plus there a section describing metadata, including the metadata all traits have.

• If your interested in more of a big picture overview, Gael wrote a good tutorial that shows how to write a
scientific application using traits for the benefit of the generated UI components. (For now, Nipype is not taking
advantage of the generated UI feature of traits.)

Traits version

We’re using Traits version 3.x which can be install as part of EPD or from pypi

More documentation

Not everything is documented in the User Manual, in those cases the enthought-dev mailing list or the API docs
is your next place to look.

65

http://nipy.org
http://nipy.org/devel
http://nipy.org/devel
http://www.mit.edu/~satra/nipype-nightly/
mailto:nipy-devel@neuroimaging.scipy.org
http://code.enthought.com/projects/traits/
http://code.enthought.com/projects/traits/docs/html/traits_user_manual/intro.html
http://code.enthought.com/projects/traits/docs/html/traits_user_manual/defining.html
http://code.enthought.com/projects/traits/docs/html/tutorials/traits_ui_scientific_app.html
http://enthought.com/products/epd.php
http://pypi.python.org/pypi/Traits/3.3.0
https://mail.enthought.com/mailman/listinfo/enthought-dev
http://code.enthought.com/projects/files/ETS32_API/enthought.traits.html

nipype Documentation, Release 0.11.0

4.1.3 Nipype Interface Specifications
Each interface class defines two specifications: 1) an InputSpec and 2) an OutputSpec. Each of these are prefixed
with the class name of the interfaces. For example, Bet has these specs:

• BETInputSpec
• BETOutputSpec

Each of these Specs are classes, derived from a base TraitedSpec class (more on these below). The InputSpec
consists of attributes which correspond to different parameters for the tool they wrap/interface. In the case of a
command-line tool like Bet, the InputSpec attributes correspond to the different command-line parameters that
can be passed to Bet. If you are familiar with the Nipype 0.2 code-base, these attributes are the same as the keys
in the opt_map dictionaries. When an interfaces class is instantiated, the InputSpec is bound to the inputs
attribute of that object. Below is an example of how the inputs appear to a user for Bet:

>>> from nipype.interfaces import fsl
>>> bet = fsl.BET()
>>> type(bet.inputs)
<class 'nipype.interfaces.fsl.preprocess.BETInputSpec'>
>>> bet.inputs.<TAB>
bet.inputs.__class__ bet.inputs.center
bet.inputs.__delattr__ bet.inputs.environ
bet.inputs.__doc__ bet.inputs.frac
bet.inputs.__getattribute__ bet.inputs.functional
bet.inputs.__hash__ bet.inputs.hashval
bet.inputs.__init__ bet.inputs.infile
bet.inputs.__new__ bet.inputs.items
bet.inputs.__reduce__ bet.inputs.mask
bet.inputs.__reduce_ex__ bet.inputs.mesh
bet.inputs.__repr__ bet.inputs.nooutput
bet.inputs.__setattr__ bet.inputs.outfile
bet.inputs.__str__ bet.inputs.outline
bet.inputs._generate_handlers bet.inputs.outputtype
bet.inputs._get_hashval bet.inputs.radius
bet.inputs._hash_infile bet.inputs.reduce_bias
bet.inputs._xor_inputs bet.inputs.skull
bet.inputs._xor_warn bet.inputs.threshold
bet.inputs.args bet.inputs.vertical_gradient

Each Spec inherits from a parent Spec. The parent Specs provide attribute(s) that are common to all child
classes. For example, FSL InputSpecs inherit from interfaces.fsl.base.FSLTraitedSpec. FSLTraitedSpec defines
an outputtype attribute, which stores the file type (NIFTI, NIFTI_PAIR, etc...) for all generated output files.

InputSpec class hierarchy

Below is the current class hierarchy for InputSpec classes (from base class down to subclasses).:
TraitedSpec: Nipype’s primary base class for all Specs. Provides initialization, some nipype-
specific methods and any trait handlers we define. Inherits from traits.HasTraits.

BaseInterfaceInputSpec: Defines inputs common to all Interfaces
(ignore_exception). If in doubt inherit from this.

CommandLineInputSpec: Defines inputs common to all command-line
classes (args and environ)
FSLTraitedSpec: Defines inputs common to all FSL classes
(outputtype)
SPMCommandInputSpec: Defines inputs common to all SPM classes
(matlab_cmd, path, and mfile)
FSTraitedSpec: Defines inputs common to all FreeSurfer classes
(sbjects_dir)
MatlabInputSpec: Defines inputs common to all Mat-
lab classes (script, nodesktop, nosplash, logfile,

66 Chapter 4. Developer Guide

nipype Documentation, Release 0.11.0

single_comp_thread, mfile, script_file, and paths)
SlicerCommandLineInputSpec: Defines inputs common to all Slicer
classes (module)

Most developers will only need to code at the the interface-level (i.e. implementing custom class inheriting from
one of the above classes).

Output Specs

The OutputSpec defines the outputs that are generated, or possibly generated depending on inputs, by the tool.
OutputSpecs inherit from interfaces.base.TraitedSpec directly.

4.1.4 Traited Attributes
Each specification attribute is an instance of a Trait class. These classes encapsulate many standard Python types
like Float and Int, but with additional behavior like type checking. (See the documentation on traits for more
information on these trait types.) To handle unique behaviors of our attributes we us traits metadata. These
are keyword arguments supplied in the initialization of the attributes. The base classes BaseInterface and
CommandLine (defined in nipype.interfaces.base) check for the existence/or value of these metadata
and handle the inputs/outputs accordingly. For example, all mandatory parameters will have the mandatory
= True metadata:

class BetInputSpec(FSLTraitedSpec):
infile = File(exists=True,

desc = 'input file to skull strip',
argstr='%s', position=0, mandatory=True)

Common

exists For files, use nipype.interfaces.base.File as the trait type. If the file must exist for the
tool to execute, specify exists = True in the initialization of File (as shown in BetInputSpec above).
This will trigger the underlying traits code to confirm the file assigned to that input actually exists. If it
does not exist, the user will be presented with an error message:

>>> bet.inputs.infile = 'does_not_exist.nii'
--
Traceback (most recent call last):
File "<ipython console>", line 1, in <module>
File "/Users/cburns/local/lib/python2.5/site-packages/nipype/interfaces/base.py", line 76, in validate
self.error(object, name, value)

File "/Users/cburns/local/lib/python2.5/site-packages/enthought/traits/trait_handlers.py", line 175, in error
value)

TraitError: The 'infile' trait of a BetInputSpec instance must be a file
name, but a value of 'does_not_exist.nii' <type 'str'> was specified.

hash_files To be used with inputs that are defining output filenames. When this flag is set to false any
Nipype will not try to hash any files described by this input. This is useful to avoid rerunning when the
specified output file already exists and has changed.

desc All trait objects have a set of default metadata attributes. desc is one of those and is used as a simple,
one-line docstring. The desc is printed when users use the help() methods.
Required: This metadata is required by all nipype interface classes.

usedefault Set this metadata to True when the default value for the trait type of this attribute is an acceptable
value. All trait objects have a default value, traits.Int has a default of 0, traits.Float has a
default of 0.0, etc... You can also define a default value when you define the class. For example, in the
code below all objects of Foo will have a default value of 12 for x:

>>> import enthought.traits.api as traits
>>> class Foo(traits.HasTraits):

4.1. Interface Specifications 67

nipype Documentation, Release 0.11.0

... x = traits.Int(12)

... y = traits.Int

...
>>> foo = Foo()
>>> foo.x
12
>>> foo.y
0

Nipype only passes inputs on to the underlying package if they have been defined (more on this later).
So if you specify usedefault = True, you are telling the parser to pass the default value on to the
underlying package. Let’s look at the InputSpec for SPM Realign:

class RealignInputSpec(BaseInterfaceInputSpec):
jobtype = traits.Enum('estwrite', 'estimate', 'write',

desc='one of: estimate, write, estwrite',
usedefault=True)

Here we’ve defined jobtype to be an enumerated trait type, Enum, which can be set to one of the
following: estwrite, estimate, or write. In a container, the default is always the first element. So
in this case, the default will be estwrite:

>>> from nipype.interfaces import spm
>>> rlgn = spm.Realign()
>>> rlgn.inputs.infile
<undefined>
>>> rlgn.inputs.jobtype
'estwrite'

xor and requires Both of these accept a list of trait names. The xor metadata reflects mutually exclusive
traits, while the requires metadata reflects traits that have to be set together. When a xor-ed trait is set, all
other traits belonging to the list are set to Undefined. The function check_mandatory_inputs ensures that
all requirements (both mandatory and via the requires metadata are satisfied). These are also reflected in
the help function.

copyfile This is metadata for a File or Directory trait that is relevant only in the context of wrapping an
interface in a Node and MapNode. copyfile can be set to either True or False. False indicates that contents
should be symlinked, while True indicates that the contents should be copied over.

min_ver and max_ver These metadata determine if a particular trait will be available when a given version
of the underlying interface runs. Note that this check is performed at runtime.:

class RealignInputSpec(BaseInterfaceInputSpec):
jobtype = traits.Enum('estwrite', 'estimate', 'write', min_ver='5',

usedefault=True)

deprecated and new_name This is metadata for removing or renaming an input field from a spec.:

class RealignInputSpec(BaseInterfaceInputSpec):
jobtype = traits.Enum('estwrite', 'estimate', 'write',

deprecated='0.8',
desc='one of: estimate, write, estwrite',
usedefault=True)

In the above example this means that the jobtype input is deprecated and will be removed in version 0.8.
Deprecation should be set to two versions from current release. Raises TraitError after package version
crosses the deprecation version.
For inputs that are being renamed, one can specify the new name of the field.:

class RealignInputSpec(BaseInterfaceInputSpec):
jobtype = traits.Enum('estwrite', 'estimate', 'write',

deprecated='0.8', new_name='job_type',
desc='one of: estimate, write, estwrite',

68 Chapter 4. Developer Guide

nipype Documentation, Release 0.11.0

usedefault=True)
job_type = traits.Enum('estwrite', 'estimate', 'write',

desc='one of: estimate, write, estwrite',
usedefault=True)

In the above example, the jobtype field is being renamed to job_type. When new_name is provided it must
exist as a trait, otherwise an exception will be raised.

Note: The version information for min_ver, max_ver and deprecated has to be provided as a string. For
example, min_ver=‘0.1’.

CommandLine

argstr The metadata keyword for specifying the format strings for the parameters. This was the value string
in the opt_map dictionaries of Nipype 0.2 code. If we look at the FlirtInputSpec, the argstr for the
reference file corresponds to the argument string I would need to provide with the command-line version
of flirt:

class FlirtInputSpec(FSLTraitedSpec):
reference = File(exists = True, argstr = '-ref %s', mandatory = True,

position = 1, desc = 'reference file')

Required: This metadata is required by all command-line interface classes.
position This metadata is used to specify the position of arguments. Both positive and negative values are

accepted. position = 0 will position this argument as the first parameter after the command name.
position = -1 will position this argument as the last parameter, after all other parameters.

genfile If True, the genfile metadata specifies that a filename should be generated for this parameter
if-and-only-if the user did not provide one. The nipype convention is to automatically generate output
filenames when not specified by the user both as a convenience for the user and so the pipeline can easily
gather the outputs. Requires _gen_filename() method to be implemented. This way should be used
if the desired file name is dependent on some runtime variables (such as file name of one of the inputs, or
current working directory). In case when it should be fixed it’s recommended to just use usedefault.

sep For List traits the string with witch elements of the list will be joined.
name_source Indicates the list of input fields from which the value of the current File output variable will

be drawn. This input field must be the name of a File. Chaining is allowed, meaning that an input field can
point to another as name_source, which also points as name_source to a third field. In this situation,
the templates for substitutions are also accumulated.

name_template By default a %s_generated template is used to create the output filename. This metadata
keyword allows overriding the generated name.

keep_extension Use this and set it True if you want the extension from the input to be kept.

SPM

field name of the structure refered by the SPM job manager
Required: This metadata is required by all SPM-mediated interface classes.

4.1.5 Defining an interface class

Common

When you define an interface class, you will define these attributes and methods:
• input_spec: the InputSpec
• output_spec: the OutputSpec
• _list_outputs(): Returns a dictionary containing names of generated files that are expected after package

completes execution. This is used by BaseInterface.aggregate_outputs to gather all output files for
the pipeline.

4.1. Interface Specifications 69

nipype Documentation, Release 0.11.0

CommandLine

For command-line interfaces:
• _cmd: the command-line command

If you used genfile:
• _gen_filename(name): Generate filename, used for filenames that nipype generates as a convenience for

users. This is for parameters that are required by the wrapped package, but we’re generating from some other
parameter. For example, BET.inputs.outfile is required by BET but we can generate the name from
BET.inputs.infile. Override this method in subclass to handle.
And optionally:

• _redirect_x: If set to True it will make Nipype start Xvfb before running the interface and redirect X output
to it. This is useful for
commandlines that spawn a graphical user interface.

• _format_arg(name, spec, value): For extra formatting of the input values before passing them to
generic _parse_inputs() method.
For example this is the class definition for Flirt, minus the docstring:

class FLIRTInputSpec(FSLCommandInputSpec):
in_file = File(exists=True, argstr='-in %s', mandatory=True,

position=0, desc='input file')
reference = File(exists=True, argstr='-ref %s', mandatory=True,

position=1, desc='reference file')
out_file = File(argstr='-out %s', desc='registered output file',

name_source=['in_file'], name_template='%s_flirt',
position=2, hash_files=False)

out_matrix_file = File(argstr='-omat %s',
name_source=['in_file'], keep_extension=True,
name_template='%s_flirt.mat',
desc='output affine matrix in 4x4 asciii format',
position=3, hash_files=False)

out_log = File(name_source=['in_file'], keep_extension=True,
requires=['save_log'],
name_template='%s_flirt.log', desc='output log')

...

class FLIRTOutputSpec(TraitedSpec):
out_file = File(exists=True,

desc='path/name of registered file (if generated)')
out_matrix_file = File(exists=True,

desc='path/name of calculated affine transform '
'(if generated)')

out_log = File(desc='path/name of output log (if generated)')

class Flirt(FSLCommand):
_cmd = 'flirt'
input_spec = FlirtInputSpec
output_spec = FlirtOutputSpec

There are two possible output files outfile and outmatrix, both of which can be generated if not specified
by the user.
Also notice the use of self._gen_fname() - a FSLCommand helper method for generating filenames (with
extensions conforming with FSLOUTPUTTYPE).
See also How to wrap a command line tool.

SPM

For SPM-mediated interfaces:
• _jobtype and _jobname: special names used used by the SPM job manager. You can find them by saving

70 Chapter 4. Developer Guide

nipype Documentation, Release 0.11.0

your batch job as an .m file and looking up the code.
And optionally:

• _format_arg(name, spec, value): For extra formatting of the input values before passing them to
generic _parse_inputs() method.

Matlab

See How to wrap a MATLAB script.

Python

See How to wrap a Python script.

4.1.6 Undefined inputs
All the inputs and outputs that were not explicitly set (And do not have a usedefault flag - see above) will have
Undefined value. To check if something is defined you have to explicitly call isdefiend function (comparing
to None will not work).

4.1.7 Example of inputs
Below we have an example of using Bet. We can see from the help which inputs are mandatory and which are
optional, along with the one-line description provided by the desc metadata:

>>> from nipype.interfaces import fsl
>>> fsl.BET.help()
Inputs

Mandatory:
infile: input file to skull strip

Optional:
args: Additional parameters to the command
center: center of gravity in voxels
environ: Environment variables (default={})
frac: fractional intensity threshold
functional: apply to 4D fMRI data
mask: create binary mask image
mesh: generate a vtk mesh brain surface
nooutput: Don't generate segmented output
outfile: name of output skull stripped image
outline: create surface outline image
outputtype: None
radius: head radius
reduce_bias: bias field and neck cleanup
skull: create skull image
threshold: apply thresholding to segmented brain image and mask
vertical_gradient: vertical gradient in fractional intensity threshold (-1, 1)

Outputs

maskfile: path/name of binary brain mask (if generated)
meshfile: path/name of vtk mesh file (if generated)
outfile: path/name of skullstripped file
outlinefile: path/name of outline file (if generated)

Here we create a bet object and specify the required input. We then check our inputs to see which are defined
and which are not:

4.1. Interface Specifications 71

nipype Documentation, Release 0.11.0

>>> bet = fsl.BET(infile = 'f3.nii')
>>> bet.inputs
args = <undefined>
center = <undefined>
environ = {'FSLOUTPUTTYPE': 'NIFTI_GZ'}
frac = <undefined>
functional = <undefined>
infile = f3.nii
mask = <undefined>
mesh = <undefined>
nooutput = <undefined>
outfile = <undefined>
outline = <undefined>
outputtype = NIFTI_GZ
radius = <undefined>
reduce_bias = <undefined>
skull = <undefined>
threshold = <undefined>
vertical_gradient = <undefined>
>>> bet.cmdline
'bet f3.nii /Users/cburns/data/nipype/s1/f3_brain.nii.gz'

We also checked the command-line that will be generated when we run the command and can see the generated
output filename f3_brain.nii.gz.

4.2 How to wrap a command line tool

The aim of this section is to describe how external programs and scripts can be wrapped for use in Nipype either
as interactive interfaces or within the workflow/pipeline environment. Currently, there is support for command
line executables/scripts and matlab scripts. One can also create pure Python interfaces. The key to defining
interfaces is to provide a formal specification of inputs and outputs and determining what outputs are generated
given a set of inputs.

4.2.1 Defining inputs and outputs
In Nipype we use Enthought Traits to define inputs and outputs of the interfaces. This allows to introduce
easy type checking. Inputs and outputs are grouped into separate classes (usually suffixed with InputSpec and
OutputSpec). For example:

class ExampleInputSpec(TraitedSpec):
input_volume = File(desc = "Input volume", exists = True,

mandatory = True)
parameter = traits.Int(desc = "some parameter")

class ExampleOutputSpec(TraitedSpec):
output_volume = File(desc = "Output volume", exists = True)

For the Traits (and Nipype) to work correctly output and input spec has to be inherited from TraitedSpec (how-
ever, this does not have to be direct inheritance).
Traits (File, Int etc.) have different parameters (called metadata). In the above example we have used the desc
metadata which holds human readable description of the input. The mandatory flag forces Nipype to throw
an exception if the input was not set. exists is a special flag that works only for File traits and checks
if the provided file exists. More details can be found at Interface Specifications.
The input and output specifications have to be connected to the our example interface class:

class Example(Interface):
input_spec = ExampleInputSpec
output_spec = ExampleOutputSpec

72 Chapter 4. Developer Guide

nipype Documentation, Release 0.11.0

Where the names of the classes grouping inputs and outputs were arbitrary the names of the fields within the
interface they are assigned are not (it always has to be input_spec and output_spec). Of course this interface
does not do much because we have not specified how to process the inputs and create the outputs. This can be
done in many ways.

4.2.2 Command line executable
As with all interfaces command line wrappers need to have inputs defined. Command line input spec has
to inherit from CommandLineInputSpec which adds two extra inputs: environ (a dictionary of environmental
variables), and args (a string defining extra flags). In addition input spec can define the relation between the
inputs and the generated command line. To achieve this we have added two metadata: argstr (string defining
how the argument should be formated) and position (number defining the order of the arguments). For
example

class ExampleInputSpec(CommandLineSpec):
input_volume = File(desc = "Input volume", exists = True,

mandatory = True, position = 0, argstr="%s")
parameter = traits.Int(desc = "some parameter", argstr = "--param %d")

As you probably noticed the argstr is a printf type string with formatting symbols. For an input defined in
InputSpec to be included into the executed commandline argstr has to be included. Additionally inside the
main interface class you need to specify the name of the executable by assigning it to the _cmd field. Also the
main interface class needs to inherit from nipype.interfaces.base.CommandLine:

class Example(CommandLine):
_cmd = 'my_command'
input_spec = ExampleInputSpec
output_spec = ExampleOutputSpec

There is one more thing we need to take care of. When the executable finishes processing it will presumably
create some output files. We need to know which files to look for, check if they exist and expose them to
whatever node would like to use them. This is done by implementing _list_outputs method in the main
interface class. Basically what it does is assigning the expected output files to the fields of our output spec:

def _list_outputs(self):
outputs = self.output_spec().get()
outputs['output_volume'] = os.path.abspath('name_of_the_file_this_cmd_made.nii')
return outputs

Sometimes the inputs need extra parsing before turning into command line parameters. For example imagine
a parameter selecting between three methods: “old”, “standard” and “new”. Imagine also that the command
line accept this as a parameter “–method=” accepting 0, 1 or 2. Since we are aiming to make nipype scripts as
informative as possible it’s better to define the inputs as following:

class ExampleInputSpec(CommandLineSpec):
method = traits.Enum("old", "standard", "new", desc = "method",

argstr="--method=%d")

Here we’ve used the Enum trait which restricts input a few fixed options. If we would leave it as it is it would
not work since the argstr is expecting numbers. We need to do additional parsing by overloading the following
method in the main interface class:

def _format_arg(self, name, spec, value):
if name == 'method':

return spec.argstr%{"old":0, "standard":1, "new":2}[value]
return super(Example, self)._format_arg(name, spec, value)

Here is a minimalistic interface for the gzip command:

4.2. How to wrap a command line tool 73

nipype Documentation, Release 0.11.0

from nipype.interfaces.base import (
TraitedSpec,
CommandLineInputSpec,
CommandLine,
File

)
import os

class GZipInputSpec(CommandLineInputSpec):
input_file = File(desc="File", exists=True, mandatory=True, argstr="%s")

class GZipOutputSpec(TraitedSpec):
output_file = File(desc = "Zip file", exists = True)

class GZipTask(CommandLine):
input_spec = GZipInputSpec
output_spec = GZipOutputSpec
cmd = 'gzip'

def _list_outputs(self):
outputs = self.output_spec().get()
outputs['output_file'] = os.path.abspath(self.inputs.input_file + ".gz")
return outputs

if __name__ == '__main__':

zipper = GZipTask(input_file='an_existing_file')
print zipper.cmdline
zipper.run()

4.2.3 Creating outputs on the fly
In many cases, command line executables will require specifying output file names as arguments on the
command line. We have simplified this procedure with three additional metadata terms: name_source,
name_template, keep_extension.
For example in the InvWarp class, the inverse_warp parameter is the name of the output file that is created
by the routine.

class InvWarpInputSpec(FSLCommandInputSpec):
...
inverse_warp = File(argstr='--out=%s', name_source=['warp'],

hash_files=False, name_template='%s_inverse',
...

we add several metadata to inputspec.
name_source indicates which field to draw from, this field must be the name of a File.
hash_files indicates that the input for this field if provided should not be used in computing the input hash for

this interface.
name_template (optional) overrides the default _generated suffix
output_name (optional) name of the output (if this is not set same name as the input will be assumed)
keep_extension (optional - not used) if you want the extension from the input to be kept
In addition one can add functionality to your class or base class, to allow changing extensions specific to package
or interface

def self._overload_extension(self, value):
return value #do whatever you want here with the name

Finally, in the outputspec make sure the name matches that of the inputspec.

74 Chapter 4. Developer Guide

nipype Documentation, Release 0.11.0

class InvWarpOutputSpec(TraitedSpec):
inverse_warp = File(exists=True,

desc=('Name of output file, containing warps that '
'are the "reverse" of those in --warp.'))

4.3 How to wrap a MATLAB script

This is minimal script for wrapping MATLAB code. You should replace the MATLAB code template, and
define approriate inputs and outputs.

4.3.1 Example 1

from nipype.interfaces.matlab import MatlabCommand
from nipype.interfaces.base import TraitedSpec, BaseInterface, BaseInterfaceInputSpec, File
import os
from string import Template

class ConmapTxt2MatInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, mandatory=True)
out_file = File('cmatrix.mat', usedefault=True)

class ConmapTxt2MatOutputSpec(TraitedSpec):
out_file = File(exists=True)

class ConmapTxt2Mat(BaseInterface):
input_spec = ConmapTxt2MatInputSpec
output_spec = ConmapTxt2MatOutputSpec

def _run_interface(self, runtime):
d = dict(in_file=self.inputs.in_file,
out_file=self.inputs.out_file)
#this is your MATLAB code template
script = Template("""in_file = ‘$in_file';

out_file = ‘$out_file';
ConmapTxt2Mat(in_file, out_file);
exit;
""").substitute(d)

mfile = True will create an .m file with your script and executed.
Alternatively
mfile can be set to False which will cause the matlab code to be
passed
as a commandline argument to the matlab executable
(without creating any files).
This, however, is less reliable and harder to debug
(code will be reduced to
a single line and stripped of any comments).

mlab = MatlabCommand(script=script, mfile=True)
result = mlab.run()
return result.runtime

def _list_outputs(self):
outputs = self._outputs().get()
outputs['out_file'] = os.path.abspath(self.inputs.out_file)
return outputs

4.3. How to wrap a MATLAB script 75

nipype Documentation, Release 0.11.0

4.3.2 Example 2
By subclassing MatlabCommand for your main class, and MatlabInputSpec for your input and output spec,
you gain access to some useful MATLAB hooks

import os
from nipype.interfaces.base import File, traits
from nipype.interfaces.matlab import MatlabCommand, MatlabInputSpec

class HelloWorldInputSpec(MatlabInputSpec):
name = traits.Str(mandatory = True,

desc = 'Name of person to say hello to')

class HelloWorldOutputSpec(MatlabInputSpec):
matlab_output = traits.Str()

class HelloWorld(MatlabCommand):
""" Basic Hello World that displays Hello <name> in MATLAB

Returns

matlab_output : capture of matlab output which may be
parsed by user to get computation results

Examples

>>> hello = HelloWorld()
>>> hello.inputs.name = 'hello_world'
>>> out = hello.run()
>>> print out.outputs.matlab_output
"""
input_spec = HelloWorldInputSpec
output_spec = HelloWorldOutputSpec

def _my_script(self):
"""This is where you implement your script"""
script = """
disp('Hello %s Python')
two = 1 + 1
"""%(self.inputs.name)
return script

def run(self, **inputs):
inject your script
self.inputs.script = self._my_script()
results = super(MatlabCommand, self).run(**inputs)
stdout = results.runtime.stdout
attach stdout to outputs to access matlab results
results.outputs.matlab_output = stdout
return results

def _list_outputs(self):
outputs = self._outputs().get()
return outputs

76 Chapter 4. Developer Guide

nipype Documentation, Release 0.11.0

4.4 How to wrap a Python script

This is a minimal pure python interface. As you can see all you need to do is to do is to define inputs, outputs,
_run_interface() (not run()), and _list_outputs.

from nipype.interfaces.base import BaseInterface, \
BaseInterfaceInputSpec, traits, File, TraitedSpec

from nipype.utils.filemanip import split_filename

import nibabel as nb
import numpy as np
import os

class SimpleThresholdInputSpec(BaseInterfaceInputSpec):
volume = File(exists=True, desc='volume to be thresholded', mandatory=True)
threshold = traits.Float(desc='everything below this value will be set to zero',

mandatory=True)

class SimpleThresholdOutputSpec(TraitedSpec):
thresholded_volume = File(exists=True, desc="thresholded volume")

class SimpleThreshold(BaseInterface):
input_spec = SimpleThresholdInputSpec
output_spec = SimpleThresholdOutputSpec

def _run_interface(self, runtime):
fname = self.inputs.volume
img = nb.load(fname)
data = np.array(img.get_data())

active_map = data > self.inputs.threshold

thresholded_map = np.zeros(data.shape)
thresholded_map[active_map] = data[active_map]

new_img = nb.Nifti1Image(thresholded_map, img.get_affine(), img.get_header())
_, base, _ = split_filename(fname)
nb.save(new_img, base + '_thresholded.nii')

return runtime

def _list_outputs(self):
outputs = self._outputs().get()
fname = self.inputs.volume
_, base, _ = split_filename(fname)
outputs["thresholded_volume"] = os.path.abspath(base + '_thresholded.nii')
return outputs

4.5 Working with nipype source code

Contents:

4.5.1 Introduction
These pages describe a git and github workflow for the nipype project.

4.4. How to wrap a Python script 77

http://git-scm.com/
http://github.com
http://nipy.org/nipype

nipype Documentation, Release 0.11.0

There are several different workflows here, for different ways of working with nipype.
This is not a comprehensive git reference, it’s just a workflow for our own project. It’s tailored to the github
hosting service. You may well find better or quicker ways of getting stuff done with git, but these should get
you started.
For general resources for learning git see git resources.

4.5.2 Install git

Overview

Debian / Ubuntu sudo apt-get install git-core
Fedora sudo yum install git-core
Windows Download and install msysGit
OS X Use the git-osx-installer

In detail

See the git page for the most recent information.
Have a look at the github install help pages available from github help
There are good instructions here: http://book.git-scm.com/2_installing_git.html

4.5.3 Following the latest source
These are the instructions if you just want to follow the latest nipype source, but you don’t need to do any
development for now.
The steps are:

• Install git
• get local copy of the git repository from github
• update local copy from time to time

Get the local copy of the code

From the command line:

git clone git://github.com/nipy/nipype.git

You now have a copy of the code tree in the new nipype directory.

Updating the code

From time to time you may want to pull down the latest code. Do this with:

cd nipype
git pull

The tree in nipype will now have the latest changes from the initial repository.

4.5.4 Making a patch
You’ve discovered a bug or something else you want to change in nipype .. — excellent!
You’ve worked out a way to fix it — even better!
You want to tell us about it — best of all!
The easiest way is to make a patch or set of patches. Here we explain how. Making a patch is the simplest and
quickest, but if you’re going to be doing anything more than simple quick things, please consider following the
Git for development model instead.

78 Chapter 4. Developer Guide

http://git-scm.com/
http://github.com
http://git-scm.com/
http://git-scm.com/
http://code.google.com/p/msysgit/downloads/list
http://code.google.com/p/git-osx-installer/downloads/list
http://git-scm.com/
http://github.com
http://help.github.com
http://book.git-scm.com/2_installing_git.html
http://github.com
http://nipy.org/nipype

nipype Documentation, Release 0.11.0

Making patches

Overview

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don't have it
git clone git://github.com/nipy/nipype.git
make a branch for your patching
cd nipype
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'
make the patch files
git format-patch -M -C master

Then, send the generated patch files to the nipype mailing list — where we will thank you warmly.

In detail

1. Tell git who you are so it can label the commits you’ve made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

2. If you don’t already have one, clone a copy of the nipype repository:

git clone git://github.com/nipy/nipype.git
cd nipype

3. Make a ‘feature branch’. This will be where you work on your bug fix. It’s nice and safe and leaves you
with access to an unmodified copy of the code in the main branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

4. Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'

Note the -am options to commit. The m flag just signals that you’re going to type a message on the
command line. The a flag — you can just take on faith — or see why the -a flag?.

5. When you have finished, check you have committed all your changes:

git status

6. Finally, make your commits into patches. You want all the commits since you branched from the master
branch:

4.5. Working with nipype source code 79

http://mail.scipy.org/mailman/listinfo/nipy-devel
http://git-scm.com/
http://nipy.org/nipype
http://www.gitready.com/beginner/2009/01/18/the-staging-area.html

nipype Documentation, Release 0.11.0

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Send these files to the nipype mailing list.
When you are done, to switch back to the main copy of the code, just return to the master branch:

git checkout master

Moving from patching to development

If you find you have done some patches, and you have one or more feature branches, you will probably want to
switch to development mode. You can do this with the repository you have.
Fork the nipype repository on github — Making your own copy (fork) of nipype. Then:

checkout and refresh master branch from main repo
git checkout master
git pull origin master
rename pointer to main repository to 'upstream'
git remote rename origin upstream
point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/nipype.git
push up any branches you've made and want to keep
git push origin the-fix-im-thinking-of

Then you can, if you want, follow the Development workflow.

4.5.5 Git for development
Contents:

Making your own copy (fork) of nipype

You need to do this only once. The instructions here are very similar to the instructions at
http://help.github.com/forking/ — please see that page for more detail. We’re repeating some of it here just
to give the specifics for the nipype project, and to suggest some default names.

Set up and configure a github account

If you don’t have a github account, go to the github page, and make one.
You then need to configure your account to allow write access — see the Generating SSH keys help on
github help.

Create your own forked copy of nipype

1. Log into your github account.
2. Go to the nipype github home at nipype github.
3. Click on the fork button:

80 Chapter 4. Developer Guide

http://mail.scipy.org/mailman/listinfo/nipy-devel
http://nipy.org/nipype
http://github.com
http://help.github.com/forking/
http://nipy.org/nipype
http://github.com
http://github.com
http://help.github.com
http://github.com
http://nipy.org/nipype
http://github.com/nipy/nipype

nipype Documentation, Release 0.11.0

Now, after a short pause and some ‘Hardcore forking action’, you should find yourself at the home page
for your own forked copy of nipype.

Set up your fork

First you follow the instructions for Making your own copy (fork) of nipype.

Overview

git clone git@github.com:your-user-name/nipype.git
cd nipype
git remote add upstream git://github.com/nipy/nipype.git

In detail

Clone your fork
1. Clone your fork to the local computer with git clone git@github.com:your-user-name/nipype.git
2. Investigate. Change directory to your new repo: cd nipype. Then git branch -a to show you all

branches. You’ll get something like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and that you also have a remote connection
to origin/master. What remote repository is remote/origin? Try git remote -v to see the
URLs for the remote. They will point to your github fork.
Now you want to connect to the upstream nipype github repository, so you can merge in changes from
trunk.

Linking your repository to the upstream repo
cd nipype
git remote add upstream git://github.com/nipy/nipype.git

upstream here is just the arbitrary name we’re using to refer to the main nipype repository at nipype github.
Note that we’ve used git:// for the URL rather than git@. The git:// URL is read only. This means we
that we can’t accidentally (or deliberately) write to the upstream repo, and we are only going to use it to merge
into our own code.
Just for your own satisfaction, show yourself that you now have a new ‘remote’, with git remote -v show,
giving you something like:

upstream git://github.com/nipy/nipype.git (fetch)
upstream git://github.com/nipy/nipype.git (push)
origin git@github.com:your-user-name/nipype.git (fetch)
origin git@github.com:your-user-name/nipype.git (push)

Configure git

Overview

Your personal git configurations are saved in the .gitconfig file in your home directory. Here is an example
.gitconfig file:

[user]
name = Your Name
email = you@yourdomain.example.com

4.5. Working with nipype source code 81

http://nipy.org/nipype
http://github.com
http://github.com/nipy/nipype
http://nipy.org/nipype
http://github.com/nipy/nipype
http://git-scm.com/

nipype Documentation, Release 0.11.0

[alias]
ci = commit -a
co = checkout
st = status -a
stat = status -a
br = branch
wdiff = diff --color-words

[core]
editor = vim

[merge]
summary = true

You can edit this file directly or you can use the git config --global command:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file, or run the commands above.

In detail

user.name and user.email It is good practice to tell git who you are, for labeling any changes you make to
the code. The simplest way to do this is from the command line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file, which should now contain a user section with your
name and email:

[user]
name = Your Name
email = you@yourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com with your actual
name and email address.

Aliases You might well benefit from some aliases to common commands.
For example, you might well want to be able to shorten git checkout to git co. Or you may want to
alias git diff --color-words (which gives a nicely formatted output of the diff) to git wdiff
The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents like this:

82 Chapter 4. Developer Guide

http://git-scm.com/

nipype Documentation, Release 0.11.0

[alias]
ci = commit -a
co = checkout
st = status -a
stat = status -a
br = branch
wdiff = diff --color-words

Editor You may also want to make sure that your editor of choice is used

git config --global core.editor vim

Merging To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
log = true

Or from the command line:

git config --global merge.log true

Development workflow

You already have your own forked copy of the nipype repository, by following Making your own copy (fork) of
nipype, Set up your fork, and you have configured git by following Configure git.

Workflow summary

• Keep your master branch clean of edits that have not been merged to the main nipype development repo. Your
master then will follow the main nipype repository.

• Start a new feature branch for each set of edits that you do.
• If you can avoid it, try not to merge other branches into your feature branch while you are working.
• Ask for review!

This way of working really helps to keep work well organized, and in keeping history as clear as possible.
See — for example — linux git workflow.

Making a new feature branch

git branch my-new-feature
git checkout my-new-feature

Generally, you will want to keep this also on your public github fork of nipype. To do this, you git push this
new branch up to your github repo. Generally (if you followed the instructions in these pages, and by default),
git will have a link to your github repo, called origin. You push up to your own repo on github with:

git push origin my-new-feature

In git >1.7 you can ensure that the link is correctly set by using the --set-upstream option:

git push --set-upstream origin my-new-feature

From now on git will know that my-new-feature is related to the my-new-feature branch in the github
repo.

The editing workflow

Overview

4.5. Working with nipype source code 83

http://nipy.org/nipype
http://git-scm.com/
http://nipy.org/nipype
http://nipy.org/nipype
http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
http://github.com
http://nipy.org/nipype
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://github.com
http://github.com
http://github.com
http://git-scm.com/
http://github.com

nipype Documentation, Release 0.11.0

hack hack
git add my_new_file
git commit -am 'NF - some message'
git push

In more detail
1. Make some changes
2. See which files have changed with git status (see git status). You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

3. Check what the actual changes are with git diff (git diff).
4. Add any new files to version control git add new_file_name (see git add).
5. To commit all modified files into the local copy of your repo„ do git commit -am ’A commit

message’. Note the -am options to commit. The m flag just signals that you’re going to type a message
on the command line. The a flag — you can just take on faith — or see why the -a flag? — and the helpful
use-case description in the tangled working copy problem. The git commit manual page might also be
useful.

6. To push the changes up to your forked repo on github, do a git push (see git push).

Asking for code review

1. Go to your repo URL — e.g. http://github.com/your-user-name/nipype.
2. Click on the Branch list button:

3. Click on the Compare button for your feature branch — here my-new-feature:

4. If asked, select the base and comparison branch names you want to compare. Usually these will be
master and my-new-feature (where that is your feature branch name).

5. At this point you should get a nice summary of the changes. Copy the URL for this, and
post it to the nipype mailing list, asking for review. The URL will look something like:
http://github.com/your-user-name/nipype/compare/master...my-new-feature.
There’s an example at http://github.com/matthew-brett/nipy/compare/master...find-install-data See:
http://github.com/blog/612-introducing-github-compare-view for more detail.

The generated comparison, is between your feature branch my-new-feature, and the place in master

84 Chapter 4. Developer Guide

http://www.kernel.org/pub/software/scm/git/docs/git-status.html
http://www.kernel.org/pub/software/scm/git/docs/git-diff.html
http://www.kernel.org/pub/software/scm/git/docs/git-add.html
http://www.gitready.com/beginner/2009/01/18/the-staging-area.html
http://tomayko.com/writings/the-thing-about-git
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http://github.com
http://mail.scipy.org/mailman/listinfo/nipy-devel
http://github.com/matthew-brett/nipy/compare/master...find-install-data
http://github.com/blog/612-introducing-github-compare-view

nipype Documentation, Release 0.11.0

from which you branched my-new-feature. In other words, you can keep updating master with-
out interfering with the output from the comparison. More detail? Note the three dots in the URL above
(master...my-new-feature).

Two vs three dots
Imagine a series of commits A, B, C, D... Imagine that there are two branches, topic and master. You branched
topic off master when master was at commit ‘E’. The graph of the commits looks like this:

A---B---C topic
/

D---E---F---G master

Then:

git diff master..topic

will output the difference from G to C (i.e. with effects of F and G), while:

git diff master...topic

would output just differences in the topic branch (i.e. only A, B, and C). 1

Asking for your changes to be merged with the main repo

When you are ready to ask for the merge of your code:
1. Go to the URL of your forked repo, say http://github.com/your-user-name/nipype.git.
2. Click on the ‘Pull request’ button:

Enter a message; we suggest you select only nipype as the recipient. The message will go to the nipype
mailing list. Please feel free to add others from the list as you like.

Merging from trunk

This updates your code from the upstream nipype github repo.

Overview
go to your master branch
git checkout master
pull changes from github
git fetch upstream
merge from upstream
git merge upstream/master

In detail We suggest that you do this only for your master branch, and leave your ‘feature’ branches un-
merged, to keep their history as clean as possible. This makes code review easier:

git checkout master

1 Thanks to Yarik Halchenko for this explanation.

4.5. Working with nipype source code 85

http://mail.scipy.org/mailman/listinfo/nipy-devel
http://mail.scipy.org/mailman/listinfo/nipy-devel
http://github.com/nipy/nipype

nipype Documentation, Release 0.11.0

Make sure you have done Linking your repository to the upstream repo.
Merge the upstream code into your current development by first pulling the upstream repo to a copy on your
local machine:

git fetch upstream

then merging into your current branch:

git merge upstream/master

Deleting a branch on github

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

(Note the colon : before test-branch. See also: http://github.com/guides/remove-a-remote-branch

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all committing into the same repository, or
even the same branch, then just share it via github.
First fork nipype into your account, as from Making your own copy (fork) of nipype.
Then, go to your forked repository github page, say http://github.com/your-user-name/nipype
Click on the ‘Admin’ button, and add anyone else to the repo as a collaborator:

Now all those people can do:

git clone git@githhub.com:your-user-name/nipype.git

Remember that links starting with git@ use the ssh protocol and are read-write; links starting with git://
are read-only.
Your collaborators can then commit directly into that repo with the usual:

git commit -am 'ENH - much better code'
git push origin master # pushes directly into your repo

Exploring your repository

To see a graphical representation of the repository branches and commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer for your github repo.

86 Chapter 4. Developer Guide

http://github.com/guides/remove-a-remote-branch
http://github.com
http://github.com/blog/39-say-hello-to-the-network-graph-visualizer
http://github.com

nipype Documentation, Release 0.11.0

4.5.6 git resources

Tutorials and summaries

• github help has an excellent series of how-to guides.
• learn.github has an excellent series of tutorials
• The pro git book is a good in-depth book on git.
• A git cheat sheet is a page giving summaries of common commands.
• The git user manual
• The git tutorial
• The git community book
• git ready — a nice series of tutorials
• git casts — video snippets giving git how-tos.
• git magic — extended introduction with intermediate detail
• The git parable is an easy read explaining the concepts behind git.
• Our own git foundation expands on the git parable.
• Fernando Perez’ git page — Fernando’s git page — many links and tips
• A good but technical page on git concepts
• git svn crash course: git for those of us used to subversion

Advanced git workflow

There are many ways of working with git; here are some posts on the rules of thumb that other projects have
come up with:

• Linus Torvalds on git management
• Linus Torvalds on linux git workflow . Summary; use the git tools to make the history of your edits as clean as

possible; merge from upstream edits as little as possible in branches where you are doing active development.

Manual pages online

You can get these on your own machine with (e.g) git help push or (same thing) git push --help,
but, for convenience, here are the online manual pages for some common commands:

• git add
• git branch
• git checkout
• git clone
• git commit
• git config
• git diff
• git log
• git pull
• git push
• git remote
• git status

4.6 Architecture (discussions from 2009)

This section reflects notes and discussion between developers during the start of the nipype project in 2009.

4.6.1 Design Guidelines
These are guidelines that the core nipype developers have agreed on:
Interfaces should keep all parameters affecting construction of the appropriate command in the “input” bunch.
The .run() method of an Interface should include all required inputs as explicitly named parameters, and they
should take a default value of None.

4.6. Architecture (discussions from 2009) 87

http://help.github.com
http://learn.github.com/
http://progit.org/
http://github.com/guides/git-cheat-sheet
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
http://book.git-scm.com/
http://www.gitready.com/
http://www.gitcasts.com/
http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://matthew-brett.github.com/pydagogue/foundation.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://www.fperez.org/py4science/git.html
http://www.eecs.harvard.edu/~cduan/technical/git/
http://git-scm.com/course/svn.html
http://git-scm.com/
http://subversion.tigris.org/
http://git-scm.com/
http://kerneltrap.org/Linux/Git_Management
http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
http://www.kernel.org/pub/software/scm/git/docs/git-add.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http://www.kernel.org/pub/software/scm/git/docs/git-config.html
http://www.kernel.org/pub/software/scm/git/docs/git-diff.html
http://www.kernel.org/pub/software/scm/git/docs/git-log.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-remote.html
http://www.kernel.org/pub/software/scm/git/docs/git-status.html

nipype Documentation, Release 0.11.0

Any Interface should at a minimum support cwd as a command-line argument to .run(). This may be accom-
plished by allowing cwd as an element of the input Bunch, or handled as a separate case.
Relatedly, any Interface should output all files to cwd if it is set, and otherwise to os.getcwd() (or equivalent).
We need to decide on a consistent policy towards the maintinence of paths to files. It seems like the best strategy
might be to do absolute (os.realpath?) filenames by default, allowing for relative paths by explicitly including
something that doesn’t start with a ‘/’. This could include ‘.’ in some sort of path-spec.
Class attributes should never be modified by an instance of that class. And probably not ever.

4.6.2 Providing for Provenance
The following is a specific discussion that should be thought out an more generally applied to the way we handle
auto-generation / or “sourcing” of settings in an interface.
There are two possible sources (at a minimum) from which the interface instance could obtain “outputtype”
- itself, or FSLInfo. Currently, the outputtype gets read from FSLInfo if self.outputtype (er, _outputtype?) is
None.
In the case of other opt_map specifications, there are defaults that get specified if the value is None. For example
output filenames are often auto-generated. If you look at the code for fsl.Bet for example, there is no way for the
outfile to get picked up at the pipeline level, because it is a transient variable. This is OK, as the generation of the
outfile name is contingent ONLY on inputs which ARE available to the pipeline machinery (i.e., via inspection
of the Bet instance’s attributes).
However, with outputtype, we are in a situation in which “autogeneration” incorporates potentially transient
information external to the instance itself. Thus, some care needs to be taken in always ensuring this information
is hashable.

4.6.3 Design Principles
These are (currently) Dav Clark’s best guess at what the group might agree on:
It should be very easy to figure out what was done by the pypeline.
Code should support relocatability - this could be via URIs, relative paths or potentially other mechanisms.
Unless otherwise called for, code should be thread safe, just in case.
The pipeline should make it easy to change aspects of an analysis with minimal recomputation, downloading,
etc. (This is not the case currently - any change will overwrite the old node). Also, the fact that multiple files get
rolled into a single node is problematic for similar reasons. E.g. - node([file1 ... file100]) will get recomputed if
we add only one file!.
However, it should also be easy to identify and delete things you don’t need anymore.
Pipelines and bits of pipelines should be easy to share.
Things that are the same should be called the same thing in most places. For interfaces that have an obvious
meaning for the terms, “infiles” and “outfile(s)”. If a file is in both the inputs and outputs, it should be called
the same thing in both places. If it is produced by one interface and consumed by another, same thing should be
used.

4.6.4 Discussions

Auto-generated filenames

In refactoring the inputs in the traitlets branch I’m working through the different ways that filenames are gen-
erated and want to make sure the interface is consistent. The notes below are all using fsl.Bet as that’s the first
class we’re Traiting. Other interface classes may handle this differently, but should agree on a convention and
apply it across all Interfaces (if possible).

Current Rules

These rules are for fsl.Bet, but it appears they are the same for all fsl and spm Interfaces.
Bet has two mandatory parameters, infile and outfile. These are the rules for how they are handled in
different use cases.

88 Chapter 4. Developer Guide

nipype Documentation, Release 0.11.0

1. If infile or outfile are absolute paths, they are used as-is and never changed. This allows users to
override any filename/path generation.

2. If outfile is not specified, a filename is generated.
3. Generated filenames (at least for outfile) are based on:

• infile, the filename minus the extensions.
• A suffix specified by the Interface. For example Bet uses _brain suffix.
• The current working directory, os.getcwd(). Example:

If infile == ‘foo.nii’ and the cwd is /home/cburns then generated outfile for Bet will be
/home/cburns/foo_brain.nii.gz

4. If outfile is not an absolute path, for instance just a filename, the absolute path is generated using
os.path.realpath. This absolute path is needed to make sure the packages (Bet in this case) write
the output file to a location of our choosing. The generated absolute path is only used in the cmdline at
runtime and does __not__ overwrite the class attr self.inputs.outfile. It is generated only when
the cmdline is invoked.

Walking through some examples

In this example we assign infile directly but outfile is generated in Bet._parse_inputs based
on infile. The generated outfile is only used in the cmdline at runtime and not stored in
self.inputs.outfile. This seems correct.

In [15]: from nipype.interfaces import fsl

In [16]: mybet = fsl.Bet()

In [17]: mybet.inputs.infile = 'foo.nii'

In [18]: res = mybet.run()

In [19]: res.runtime.cmdline
Out[19]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/foo_brain.nii.gz'

In [21]: mybet.inputs
Out[21]: Bunch(center=None, flags=None, frac=None, functional=None,
infile='foo.nii', mask=None, mesh=None, nooutput=None, outfile=None,
outline=None, radius=None, reduce_bias=None, skull=None, threshold=None,
verbose=None, vertical_gradient=None)

In [24]: mybet.cmdline
Out[24]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/foo_brain.nii.gz'

In [25]: mybet.inputs.outfile

In [26]: mybet.inputs.infile
Out[26]: 'foo.nii'

We get the same behavior here when we assign infile at initialization:

In [28]: mybet = fsl.Bet(infile='foo.nii')

In [29]: mybet.cmdline
Out[29]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/foo_brain.nii.gz'

In [30]: mybet.inputs
Out[30]: Bunch(center=None, flags=None, frac=None, functional=None,
infile='foo.nii', mask=None, mesh=None, nooutput=None, outfile=None,
outline=None, radius=None, reduce_bias=None, skull=None, threshold=None,
verbose=None, vertical_gradient=None)

4.6. Architecture (discussions from 2009) 89

nipype Documentation, Release 0.11.0

In [31]: res = mybet.run()

In [32]: res.runtime.cmdline
Out[32]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/foo_brain.nii.gz'

Here we specify absolute paths for both infile and outfile. The command line’s look as expected:

In [53]: import os

In [54]: mybet = fsl.Bet()

In [55]: mybet.inputs.infile = os.path.join('/Users/cburns/tmp/junk', 'foo.nii')
In [56]: mybet.inputs.outfile = os.path.join('/Users/cburns/tmp/junk', 'bar.nii')

In [57]: mybet.cmdline
Out[57]: 'bet /Users/cburns/tmp/junk/foo.nii /Users/cburns/tmp/junk/bar.nii'

In [58]: res = mybet.run()

In [59]: res.runtime.cmdline
Out[59]: 'bet /Users/cburns/tmp/junk/foo.nii /Users/cburns/tmp/junk/bar.nii'

Here passing in a new outfile in the run method will update mybet.inputs.outfile to the passed in
value. Should this be the case?

In [110]: mybet = fsl.Bet(infile='foo.nii', outfile='bar.nii')

In [111]: mybet.inputs.outfile
Out[111]: 'bar.nii'

In [112]: mybet.cmdline
Out[112]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/bar.nii'

In [113]: res = mybet.run(outfile = os.path.join('/Users/cburns/tmp/junk', 'not_bar.nii'))

In [114]: mybet.inputs.outfile
Out[114]: '/Users/cburns/tmp/junk/not_bar.nii'

In [115]: mybet.cmdline
Out[115]: 'bet foo.nii /Users/cburns/tmp/junk/not_bar.nii'

In this case we provide outfile but not as an absolue path, so the absolue path is generated and used for the
cmdline when run, but mybet.inputs.outfile is not updated with the absolute path.

In [74]: mybet = fsl.Bet(infile='foo.nii', outfile='bar.nii')

In [75]: mybet.inputs.outfile
Out[75]: 'bar.nii'

In [76]: mybet.cmdline
Out[76]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/bar.nii'

In [77]: res = mybet.run()

In [78]: res.runtime.cmdline
Out[78]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/bar.nii'

In [80]: res.interface.inputs.outfile
Out[80]: 'bar.nii'

90 Chapter 4. Developer Guide

nipype Documentation, Release 0.11.0

4.7 W3C PROV support

4.7.1 Overview
We’re using the the W3C PROV data model to capture and represent provenance in Nipype.
For an overview see:
PROV-DM overview
Each interface writes out a provenance.json (currently prov-json) or provenance.rdf (if rdflib is available) file.
The workflow engine can also write out a provenance of the workflow if instructed.
This is very much an experimental feature as we continue to refine how exactly the provenance should be stored
and how such information can be used for reporting or reconstituting workflows. By default provenance writing
is disabled for the 0.9 release, to enable insert the following code at the top of your script:

>>> from nipype import config
>>> config.enable_provenance()

4.8 Software using Nipype

4.8.1 Configurable Pipeline for the Analysis of Connectomes (C-PAC)
C-PAC is an open-source software pipeline for automated preprocessing and analysis of resting-state fMRI data.
C-PAC builds upon a robust set of existing software packages including AFNI, FSL, and ANTS, and makes it
easy for both novice users and experts to explore their data using a wide array of analytic tools. Users define
analysis pipelines by specifying a combination of preprocessing options and analyses to be run on an arbitrary
number of subjects. Results can then be compared across groups using the integrated group statistics feature.
C-PAC makes extensive use of Nipype Workflows and Interfaces.

4.8.2 BRAINSTools
BRAINSTools is a suite of tools for medical image processing focused on brain analysis.

4.8.3 Brain Imaging Pipelines (BIPs)
BIPs is a set of predefined Nipype workflows coupled with a graphical interface and ability to save and share
workflow configurations. It provides both Nipype Workflows and Interfaces.

4.8.4 BROCCOLI
BROCCOLI is a piece of software for fast fMRI analysis on many core CPUs and GPUs. It provides Nipype
Interfaces.

4.8.5 Forward
Forward is set of tools simplifying the preparation of accurate electromagnetic head models for EEG forward
modeling. It uses Nipype Workflows and Interfaces.

4.8.6 Limbo
Limbo is a toolbox for finding brain regions that are neither significantly active nor inactive, but rather “in
limbo”. It was build using custom Nipype Interfaces and Workflows.

4.8.7 Lyman
Lyman is a high-level ecosystem for analyzing task based fMRI neuroimaging data using open-source software.
It aims to support an analysis workflow that is powerful, flexible, and reproducible, while automating as much

4.7. W3C PROV support 91

http://www.w3.org/TR/prov-dm/
http://slideviewer.herokuapp.com/url/raw.github.com/ni-/notebooks/master/NIDMIntro.ipynb
http://fcp-indi.github.io/
http://brainsia.github.io/BRAINSTools/
https://github.com/INCF/BrainImagingPipelines
https://github.com/wanderine/BROCCOLI/
http://cyclotronresearchcentre.github.io/forward/
https://github.com/Gilles86/in_limbo
http://stanford.edu/~mwaskom/software/lyman/

nipype Documentation, Release 0.11.0

of the processing as possible. It is build upon Nipype Workflows and Interfaces.

4.8.8 Medimsight
Medimsight is a commercial service medical imaging cloud platform. It uses Nipype to interface with various
neuroimaging software.

4.8.9 MIA
MIA MIA is a a toolkit for gray scale medical image analysis. It provides Nipype interfaces for easy integration
with other software.

4.8.10 Mindboggle
Mindboggle software package automates shape analysis of anatomical labels and features extracted from human
brain MR image data. Mindboggle can be run as a single command, and can be easily installed as a cross-
platform virtual machine for convenience and reproducibility of results. Behind the scenes, open source Python
and C++ code run within a Nipype pipeline framework.

4.8.11 OpenfMRI
OpenfMRI is a repository for task based fMRI datasets. It uses Nipype for automated analysis of the deposited
data.

4.8.12 serial functional Diffusion Mapping (sfDM)
‘sfDM <http://github.com/PIRCImagingTools/sfDM>’_ is a software package for looking at changes in diffu-
sion profiles of different tissue types across time. It uses Nipype to process the data.

4.8.13 The Stanford CNI MRS Library (SMAL)
SMAL is a library providing algorithms and methods to read and analyze data from Magnetic Resonance Spec-
troscopy (MRS) experiments. It provides an API for fitting models of the spectral line-widths of several different
molecular species, and quantify their relative abundance in human brain tissue. SMAL uses Nipype Workflows
and Interfaces.

4.8.14 tract_querier
tract_querier is a White Matter Query Language tool. It provides Nipype interfaces.

Interfaces, Workflows and Examples
• Workflows
• Examples
• Interfaces

92 Chapter 4. Developer Guide

https://www.medimsight.com
http://mia.sourceforge.net
http://mindboggle.info/users/README.html
https://openfmri.org/
http://github.com/PIRCImagingTools/sfDM
http://cni.github.io/MRS/doc/_build/html/index.html
https://github.com/demianw/tract_querier

Index

Symbols
__init__() (nipype.caching.memory.PipeFunc method),

11

C
cache() (nipype.caching.Memory method), 10
clear_previous_runs() (nipype.caching.Memory method),

11
clear_runs_since() (nipype.caching.Memory method), 11

I
interface, 15

M
Memory (class in nipype.caching), 10
modules, 15

N
node, 15

P
PipeFunc (class in nipype.caching.memory), 11
pipeline, 15

W
workflow, 15

93

	User Guide
	Download and install
	Running Nipype in a VM
	Tutorial : Interfaces
	Interface caching
	Tutorial : Workflows
	Using Nipype Plugins
	Configuration File
	Debugging Nipype Workflows
	DataGrabber and DataSink explained
	The SelectFiles Interfaces
	The Function Interface
	MapNode, iterfield, and iterables explained
	JoinNode, synchronize and itersource
	Model Specification for First Level fMRI Analysis
	Saving Workflows and Nodes to a file (experimental)
	Using SPM with MATLAB Common Runtime
	Using MIPAV, JIST, and CBS Tools
	Running Nipype Interfaces from the command line (nipype_cmd)

	Changes in Nipype
	Release 0.11.0 (September 15, 2015)
	Release 0.10.0 (October 10, 2014)
	Release 0.9.2 (January 31, 2014)
	Release 0.9.1 (December 25, 2013)
	Release 0.9.0 (December 20, 2013)
	Release 0.8.0 (May 8, 2013)
	Release 0.7.0 (Dec 18, 2012)
	Release 0.6.0 (Jun 30, 2012)
	Release 0.5.3 (Mar 23, 2012)
	Release 0.5.2 (Mar 14, 2012)
	Release 0.5 (Mar 10, 2012)
	Release 0.4.1 (Jun 16, 2011)
	Release 0.4 (Jun 11, 2011)
	Release 0.3.4 (Jan 12, 2011)
	Release 0.3.3 (Sep 16, 2010)
	Release 0.3.2 (Aug 03, 2010)
	Release 0.3.1 (Jul 29, 2010)
	Release 0.3 (Jul 27, 2010)

	API
	Developer Guide
	Interface Specifications
	How to wrap a command line tool
	How to wrap a MATLAB script
	How to wrap a Python script
	Working with nipype source code
	Architecture (discussions from 2009)
	W3C PROV support
	Software using Nipype

