

 Navigation

 	
 index

 	nipy pipeline and interfaces package

	[image: _images/nipype_architecture_overview2.png]

	
Current neuroimaging software offer users an incredible opportunity to
analyze data using a variety of different algorithms. However, this has
resulted in a heterogeneous collection of specialized applications
without transparent interoperability or a uniform operating interface.

Nipype, an open-source, community-developed initiative under the
umbrella of NiPy [http://nipy.org], is a Python project that provides a uniform interface
to existing neuroimaging software and facilitates interaction between
these packages within a single workflow. Nipype provides an environment
that encourages interactive exploration of algorithms from different
packages (e.g., ANTS [http://stnava.github.io/ANTs/], SPM [http://www.fil.ion.ucl.ac.uk/spm], FSL [http://www.fmrib.ox.ac.uk/fsl], FreeSurfer [http://surfer.nmr.mgh.harvard.edu], Camino [http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/pmwiki.php], MRtrix [http://www.brain.org.au/software/mrtrix/index.html], MNE [https://martinos.org/mne/index.html], AFNI [http://afni.nimh.nih.gov/afni],
Slicer [http://slicer.org]), eases the design of workflows within and between packages, and
reduces the learning curve necessary to use different packages. Nipype is
creating a collaborative platform for neuroimaging software development
in a high-level language and addressing limitations of existing pipeline
systems.

Nipype allows you to:

	easily interact with tools from different software packages

	combine processing steps from different software packages

	develop new workflows faster by reusing common steps from old ones

	process data faster by running it in parallel on many cores/machines

	make your research easily reproducible

	share your processing workflows with the community

Reference

Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS.
(2011). Nipype: a flexible, lightweight and extensible neuroimaging data
processing framework in Python. Front. Neuroinform. 5:13. Download [http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2011.00013/abstract]

Tip

To get started, click Quickstart above. The Links box on the right is
available on any page of this website.

 Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	nipy pipeline and interfaces package

Index

 _
 | C
 | I
 | M
 | N
 | P
 | W

_

 	

 	__init__() (nipype.caching.memory.PipeFunc method)

C

 	

 	cache() (nipype.caching.Memory method)

 	clear_previous_runs() (nipype.caching.Memory method)

 	

 	clear_runs_since() (nipype.caching.Memory method)

I

 	

 	interface

M

 	

 	Memory (class in nipype.caching)

 	

 	modules

N

 	

 	node

P

 	

 	PipeFunc (class in nipype.caching.memory)

 	

 	pipeline

W

 	

 	workflow

 Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

 _images/graphviz-ea7e6e625078a4a95f66a996ff23bef2e5e179f6.png

_images/pull_button.png
#Admin | © Unwatch i Pull Roquost L1 Down!

Downloads (0) ~ Wiki (1) Graphs

devel/gitwash/git_install.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Install git

Overview

		Debian / Ubuntu
		sudo apt-get install git-core

		Fedora
		sudo yum install git-core

		Windows
		Download and install msysGit [http://code.google.com/p/msysgit/downloads/list]

		OS X
		Use the git-osx-installer [http://code.google.com/p/git-osx-installer/downloads/list]

In detail

See the git [http://git-scm.com/] page for the most recent information.

Have a look at the github [http://github.com] install help pages available from github help [http://help.github.com]

There are good instructions here: http://book.git-scm.com/2_installing_git.html

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/joinnode_and_itersource.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

JoinNode, synchronize and itersource

The previous MapNode, iterfield, and iterables explained chapter described how to
fork and join nodes using MapNode and iterables. In this chapter, we
introduce features which build on these concepts to add workflow
flexibility.

JoinNode, joinsource and joinfield

A nipype.pipeline.engine.JoinNode generalizes MapNode to
operate in conjunction with an upstream iterable node to reassemble
downstream results, e.g.:

[image: digraph joinnode_ex {
"A" -> "B1" -> "C1" -> "D";
"A" -> "B2" -> "C2" -> "D";
"A" -> "B3" -> "C3" -> "D";
}]

The code to achieve this is as follows:

import nipype.pipeline.engine as pe
a = pe.Node(interface=A(), name="a")
b = pe.Node(interface=B(), name="b")
b.iterables = ("in_file", images)
c = pe.Node(interface=C(), name="c")
d = pe.JoinNode(interface=D(), joinsource="b",
 joinfield="in_files", name="d")

my_workflow = pe.Workflow(name="my_workflow")
my_workflow.connect([(a,b,[('subject','subject')]),
 (b,c,[('out_file','in_file')])
 (c,d,[('out_file','in_files')])
])

This example assumes that interface “A” has one output subject,
interface “B” has two inputs subject and in_file and one output
out_file, interface “C” has one input in_file and one output
out_file, and interface D has one list input in_files. The
images variable is a list of three input image file names.

As with iterables and the MapNode iterfield, the joinfield
can be a list of fields. Thus, the declaration in the previous example
is equivalent to the following:

d = pe.JoinNode(interface=D(), joinsource="b",
 joinfield=["in_files"], name="d")

The joinfield defaults to all of the JoinNode input fields, so the
declaration is also equivalent to the following:

d = pe.JoinNode(interface=D(), joinsource="b", name="d")

In this example, the node “c” out_file outputs are collected into
the JoinNode “d” in_files input list. The in_files order is the
same as the upstream “b” node iterables order.

The JoinNode input can be filtered for unique values by specifying
the unique flag, e.g.:

d = pe.JoinNode(interface=D(), joinsource="b", unique=True, name="d")

synchronize

The nipype.pipeline.engine.Node iterables parameter can be
be a single field or a list of fields. If it is a list, then execution
is performed over all permutations of the list items. For example:

b.iterables = [("m", [1, 2]), ("n", [3, 4])]

results in the execution graph:

[image: digraph multiple_iterables_ex {
"A" -> "B13" -> "C";
"A" -> "B14" -> "C";
"A" -> "B23" -> "C";
"A" -> "B24" -> "C";
}]

where “B13” has inputs m = 1, n = 3, “B14” has inputs m = 1,
n = 4, etc.

The synchronize parameter synchronizes the iterables lists, e.g.:

b.iterables = [("m", [1, 2]), ("n", [3, 4])]
b.synchronize = True

results in the execution graph:

[image: digraph synchronize_ex {
"A" -> "B13" -> "C";
"A" -> "B24" -> "C";
}]

where the iterable inputs are selected in lock-step by index, i.e.:

(m, n) = (1, 3) and (2, 4)

for “B13” and “B24”, resp.

itersource

The itersource feature allows you to expand a downstream iterable
based on a mapping of an upstream iterable. For example:

a = pe.Node(interface=A(), name="a")
b = pe.Node(interface=B(), name="b")
b.iterables = ("m", [1, 2])
c = pe.Node(interface=C(), name="c")
d = pe.Node(interface=D(), name="d")
d.itersource = ("b", "m")
d.iterables = [("n", {1:[3,4], 2:[5,6]})]
my_workflow = pe.Workflow(name="my_workflow")
my_workflow.connect([(a,b,[('out_file','in_file')]),
 (b,c,[('out_file','in_file')])
 (c,d,[('out_file','in_file')])
])

results in the execution graph:

[image: digraph itersource_ex {
"A" -> "B1" -> "C1" -> "D13";
"C1" -> "D14";
"A" -> "B2" -> "C2" -> "D25";
"C2" -> "D26";
}]

In this example, all interfaces have input in_file and output
out_file. In addition, interface “B” has input m and interface “D”
has input n. A Python dictionary associates the “b” node input
value with the downstream “d” node n iterable values.

This example can be extended with a summary JoinNode:

e = pe.JoinNode(interface=E(), joinsource="d",
 joinfield="in_files", name="e")
my_workflow.connect(d, 'out_file',
 e, 'in_files')

resulting in the graph:

[image: digraph itersource_with_join_ex {
"A" -> "B1" -> "C1" -> "D13" -> "E";
"C1" -> "D14" -> "E";
"A" -> "B2" -> "C2" -> "D25" -> "E";
"C2" -> "D26" -> "E";
}]

The combination of iterables, MapNode, JoinNode, synchronize and
itersource enables the creation of arbitrarily complex workflow graphs.
The astute workflow builder will recognize that this flexibility is
both a blessing and a curse. These advanced features are handy additions
to the Nipype toolkit when used judiciously.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

interfaces/index.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Interfaces and Algorithms

		Release:		0.11.0

		Date:		September 15, 2015, 17:26 PDT

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

_static/plus.png

_images/smoothrealignconnected.png
IN

Realignspm

OouT

realigned_files

IN

infile

Smooth.spm

ouT

_static/comment-bright.png

_images/branch_list.png
Source Commits Network (12) Fork Queue

Switch Branches (1) + Switch Tags (1) + Branch List

_images/smoothrealignunconnected.png
Smooth.spm

ouT

Realignspm

ouT

_images/proc2subj.png
Realign.spml1 Realign.spml0
ArtifactDetect rapidart] Smooth.spm0 ArtifactDetect rapidart0
SpecifyModel modelgenl SpecifyModel modelgen0

_static/down-pressed.png

_static/comment-close.png

_static/up.png

_images/branch_list_compare.png
NAME STATE

my-new-feature — BT
Lastupdated 18 mintes ago osenina

_static/ajax-loader.gif

_images/graphviz-5ccfc22ea445e4176159a1a40eca28bcfd01d77b.png

_static/up-pressed.png

_static/minus.png

searchresults.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Search results

Loading

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

about.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

About

Citation

Reference

Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML,
Ghosh SS. (2011). Nipype: a flexible, lightweight and extensible neuroimaging
data processing framework in Python. Front. Neuroimform. 5:13.

Download [http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2011.00013/abstract]

@article { Gorgolewski2011,
 title = "Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python.",
 year = "2011",
 author = "Krzysztof Gorgolewski and Christopher D Burns and Cindee Madison and Dav Clark and Yaroslav O Halchenko and Michael L Waskom and Satrajit S Ghosh",
 journal = "Front Neuroinform",
 volume = "5",
 month = "08",
 doi = "10.3389/fninf.2011.00013",
 pubmed = "21897815",
 url = "http://dx.doi.org/10.3389/fninf.2011.00013",
 issn = "1662-5196"}

Code contributors

Contributors to Nipype include but are not limited to:

		
		Aimi Watanabe

		Alexander Schaefer

		Alexandre Gramfort

		Anisha Keshavan

		Ariel Rokem

		Ben Acland

		Basile Pinsard

		Brendan Moloney

		Brian Cheung

		Charl Linssen

		Chris Filo Gorgolewski

		Chris Steele

		Christian Haselgrove

		Christopher Burns

		Cindee Madison

		Claire Tarbert

		Colin Buchanan

		Daniel Ginsburg

		Daniel Haehn

		Daniel Margulies

		Dav Clark

		David Welch

		Drew Erickson

		Erik Kastman

		Félix C. Morency

		Gael Varoquaux

		
		Hans Johnson

		Janosch Linkersdörfer

		Januzz

		Jarrod Millman

		Jeff Lai

		Jessica Forbes

		John Salvatore

		Lijie Huang

		Michael Hallquist

		Michael Hanke

		Michael Notter

		Michael Waskom

		Nolan Nichols

		Oliver Hinds

		Oscar Esteban

		Rosalia Tungaraza

		Satrajit Ghosh

		Sharad Sikka

		Stephan Gerhard

		Erik Ziegler

		Valentin Haenel

		Xiangzhen Kong

		Xu Wang

		Yannick Schwartz

		Yaroslav O. Halchenko

For full most up to date list see Ohloh [https://www.ohloh.net/p/nipype/contributors].

Other contributors

		
		Matthew Brett

		Michael Castelle

		Philippe Ciuciu

		Yann Cointepas

		Mark D’Esposito

		Susan Gabrieli

		Brian Hawthorne

		Tim Leslie

		Fernando Perez

		Tyler Perrachione

		
		Jean-Baptiste Poline

		Alexis Roche

		Denis Riviere

		Gretchen Reynolds

		Jonathan Taylor

		Bertrand Thirion

		Bernjamin Thyreau

		Mike Trumpis

		Karl Young

		Tom Waite

We would also like to thank JetBrains [http://www.jetbrains.com/] for providing Pycharm [http://www.jetbrains.com/pycharm/] licenses.

Funding

Satrajit Ghosh work on this project was partially funded by NIBIB R03 EB008673 (PI: Ghosh and Whitfield-Gabrieli) and by the INCF [http://www.incf.org] through a contract with TankThink Labs, LLC.
Chris Burns was supported by NIMH grant 5R01MH081909-02 (PI: Desposito). Hans Jonson was supported by
2 U54 EB005149 - 06 Core 2b Huntington’s Disease - Driving Biological Project [http://projectreporter.nih.gov/project_info_description.cfm?aid=8153616&icde=16158743&ddparam=&ddvalue=&ddsub=&cr=18&csb=PT&cs=ASC],
S10 RR023392 Enterprise Storage In A Collaborative Neuroimaging Environment [http://projectreporter.nih.gov/project_info_description.cfm?aid=7209718&icde=16158552&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC],
R01 NS040068 Neurobiological Predictors of Huntington’s Disease [http://projectreporter.nih.gov/project_info_description.cfm?aid=6266377&icde=16158103],
and UL1 TR000442 University of Iowa Clinical and Translational Science Program [http://projectreporter.nih.gov/project_info_description.cfm?aid=8467220&icde=16159156&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC].

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

version.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

		Release:		0.11.0

		Date:		September 15, 2015, 17:26 PDT

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

changes.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Changes in Nipype

Release 0.11.0 (September 15, 2015)

		API: Change how hash values are computed (https://github.com/nipy/nipype/pull/1174)

		
		ENH: New algorithm: mesh.WarpPoints applies displacements fields to point sets

		(https://github.com/nipy/nipype/pull/889).

		ENH: New interfaces for MRTrix3 (https://github.com/nipy/nipype/pull/1126)

		ENH: New option in afni.3dRefit - zdel, ydel, zdel etc. (https://github.com/nipy/nipype/pull/1079)

		FIX: ants.Registration composite transform outputs are no longer returned as lists (https://github.com/nipy/nipype/pull/1183)

		
		BUG: ANTs Registration interface failed with multi-modal inputs

		(https://github.com/nipy/nipype/pull/1176) (https://github.com/nipy/nipype/issues/1175)

		ENH: dipy.TrackDensityMap interface now accepts a reference image (https://github.com/nipy/nipype/pull/1091)

		FIX: Bug in XFibres5 (https://github.com/nipy/nipype/pull/1168)

		
		ENH: Attempt to use hard links for data sink.

		(https://github.com/nipy/nipype/pull/1161)

		
		FIX: Updates to SGE Plugins

		(https://github.com/nipy/nipype/pull/1129)

		
		ENH: Add ants JointFusion() node with testing

		(https://github.com/nipy/nipype/pull/1160)

		
		ENH: Add –float option for antsRegistration calls

		(https://github.com/nipy/nipype/pull/1159)

		
		ENH: Added interface to simulate DWIs using the multi-tensor model

		(https://github.com/nipy/nipype/pull/1085)

		ENH: New interface for FSL fslcpgeom utility (https://github.com/nipy/nipype/pull/1152)

		ENH: Added SLURMGraph plugin for submitting jobs to SLURM with dependencies (https://github.com/nipy/nipype/pull/1136)

		
		FIX: Enable absolute path definitions in DCMStack (https://github.com/nipy/nipype/pull/1089,

		replaced by https://github.com/nipy/nipype/pull/1093)

		
		ENH: New mesh.MeshWarpMaths to operate on surface-defined warpings

		(https://github.com/nipy/nipype/pull/1016)

		
		FIX: Refactor P2PDistance, change name to ComputeMeshWarp, add regression tests,

		fix bug in area weighted distance, and added optimizations
(https://github.com/nipy/nipype/pull/1016)

		ENH: Add an option not to resubmit Nodes that finished running when using SGEGraph (https://github.com/nipy/nipype/pull/1002)

		FIX: FUGUE is now properly listing outputs. (https://github.com/nipy/nipype/pull/978)

		
		ENH: Improved FieldMap-Based (FMB) workflow for correction of susceptibility distortions in EPI seqs.

		(https://github.com/nipy/nipype/pull/1019)

		FIX: In the FSLXcommand _list_outputs function fixed for loop range (https://github.com/nipy/nipype/pull/1071)

		ENH: Dropped support for now 7 years old Python 2.6 (https://github.com/nipy/nipype/pull/1069)

		FIX: terminal_output is not mandatory anymore (https://github.com/nipy/nipype/pull/1070)

		ENH: Added “nipype_cmd” tool for running interfaces from the command line (https://github.com/nipy/nipype/pull/795)

		FIX: Fixed Camino output naming (https://github.com/nipy/nipype/pull/1061)

		ENH: Add the average distance to ErrorMap (https://github.com/nipy/nipype/pull/1039)

		ENH: Inputs with name_source can be now chained in cascade (https://github.com/nipy/nipype/pull/938)

		
		ENH: Improve JSON interfaces: default settings when reading and consistent output creation

		when writing (https://github.com/nipy/nipype/pull/1047)

		FIX: AddCSVRow problems when using infields (https://github.com/nipy/nipype/pull/1028)

		FIX: Removed unused ANTS registration flag (https://github.com/nipy/nipype/pull/999)

		FIX: Amend create_tbss_non_fa() workflow to match FSL’s tbss_non_fa command. (https://github.com/nipy/nipype/pull/1033)

		FIX: remove unused mandatory flag from spm normalize (https://github.com/nipy/nipype/pull/1048)

		ENH: Update ANTSCorticalThickness interface (https://github.com/nipy/nipype/pull/1013)

		FIX: Edge case with sparsemodels and PEP8 cleanup (https://github.com/nipy/nipype/pull/1046)

		ENH: New io interfaces for JSON files reading/writing (https://github.com/nipy/nipype/pull/1020)

		ENH: Enhanced openfmri script to support freesurfer linkage (https://github.com/nipy/nipype/pull/1037)

		BUG: matplotlib is supposed to be optional (https://github.com/nipy/nipype/pull/1003)

		FIX: Fix split_filename behaviour when path has no file component (https://github.com/nipy/nipype/pull/1035)

		ENH: Updated FSL dtifit to include option for grad non-linearities (https://github.com/nipy/nipype/pull/1032)

		
		ENH: Updated Camino tracking interfaces, which can now use FSL bedpostx output.

		New options also include choice of tracker, interpolator, stepsize and
curveinterval for angle threshold (https://github.com/nipy/nipype/pull/1029)

		FIX: Interfaces redirecting X crashed if $DISPLAY not defined (https://github.com/nipy/nipype/pull/1027)

		FIX: Bug crashed ‘make api’ (https://github.com/nipy/nipype/pull/1026)

		ENH: Updated antsIntroduction to handle RA and RI registrations (https://github.com/nipy/nipype/pull/1009)

		
		ENH: Updated N4BiasCorrection input spec to include weight image and spline order. Made

		argument formatting consistent. Cleaned ants.segmentation according to PEP8.
(https://github.com/nipy/nipype/pull/990/files)

		ENH: SPM12 Normalize interface (https://github.com/nipy/nipype/pull/986)

		FIX: Utility interface test dir (https://github.com/nipy/nipype/pull/986)

		FIX: IPython engine directory reset after crash (https://github.com/nipy/nipype/pull/987)

		ENH: Resting state fMRI example with NiPy realignment and no SPM (https://github.com/nipy/nipype/pull/992)

		
		FIX: Corrected Freesurfer SegStats _list_outputs to avoid error if summary_file is

		undefined (issue #994)(https://https://github.com/nipy/nipype/pull/996)

		FIX: OpenfMRI support and FSL 5.0.7 changes (https://github.com/nipy/nipype/pull/1006)

		FIX: Output prefix in SPM Normalize with modulation (https://github.com/nipy/nipype/pull/1023)

		ENH: Usability improvements in cluster environments (https://github.com/nipy/nipype/pull/1025)

		ENH: ANTs JointFusion() (https://github.com/nipy/nipype/pull/1042)

		ENH: Added csvReader() utility (https://github.com/nipy/nipype/pull/1044)

		FIX: typo in nipype.interfaces.freesurfer.utils.py Tkregister2 (https://github.com/nipy/nipype/pull/1083)

		FIX: SSHDataGrabber outputs now return full path to the grabbed/downloaded files. (https://github.com/nipy/nipype/pull/1086)

		FIX: Add QA output for TSNR to resting workflow (https://github.com/nipy/nipype/pull/1088)

		FIX: Change N4BiasFieldCorrection to use short tag for dimensionality (backward compatible) (https://github.com/nipy/nipype/pull/1096)

		ENH: Added -newgrid input to Warp in AFNI (3dWarp wrapper) (https://github.com/nipy/nipype/pull/1128)

		FIX: Fixed AFNI Copy interface to use positional inputs as required (https://github.com/nipy/nipype/pull/1131)

		ENH: Added a check in Dcm2nii to check if nipype created the config.ini file and remove if true (https://github.com/nipy/nipype/pull/1132)

		
		ENH: Use a while loop to wait for Xvfb (up to a max wait time “xvfb_max_wait” in config file, default 10)

		(https://github.com/nipy/nipype/pull/1142)

Release 0.10.0 (October 10, 2014)

		
		ENH: New miscelaneous interfaces: SplitROIs (mapper), MergeROIs (reducer)

		to enable parallel processing of very large images.

		
		ENH: Updated FSL interfaces: BEDPOSTX and XFibres, former interfaces are still

		available with the version suffix: BEDPOSTX4 and XFibres4. Added gpu
versions of BEDPOSTX: BEDPOSTXGPU, BEDPOSTX5GPU, and BEDPOSTX4GPU

		ENH: Added experimental support for MIPAV algorithms thorugh JIST plugins

		ENH: New dipy interfaces: Denoise, Resample

		ENH: New Freesurfer interfaces: Tkregister2 (for conversion of fsl style matrices to freesurfer format), MRIPretess

		ENH: New FSL interfaces: WarpPoints, WarpPointsToStd, EpiReg, ProbTrackX2, WarpUtils, ConvertWarp

		ENH: New miscelaneous interfaces: AddCSVRow, NormalizeProbabilityMapSet, AddNoise

		ENH: New AFNI interfaces: Eval, Means, SVMTest, SVMTrain

		
		ENH: FUGUE interface has been refactored to use the name_template system, 3 examples

		added to doctests, some bugs solved.

		
		API: Interfaces to external packages are no longer available in the top-level

		nipype namespace, and must be imported directly (e.g.
from nipype.interfaces import fsl).

		
		ENH: Support for elastix via a set of new interfaces: Registration, ApplyWarp,

		AnalyzeWarp, PointsWarp, and EditTransform

		ENH: New ANTs interface: ApplyTransformsToPoints, LaplacianThickness

		ENH: New Diffusion Toolkit interface: TrackMerge

		ENH: New MRtrix interface: FilterTracks

		
		ENH: New metrics group in algorithms. Now Distance, Overlap, and FuzzyOverlap

		are found in nipype.algorithms.metrics instead of misc. Overlap interface
extended to allow files containing multiple ROIs and volume physical units.

		ENH: New interface in algorithms.metrics: ErrorMap (a voxel-wise diff map).

		ENH: New FreeSurfer workflow: create_skullstripped_recon_flow()

		
		ENH: Deep revision of workflows for correction of dMRI artifacts. New dmri_preprocessing

		example.

		ENH: New data grabbing interface that works over SSH connections, SSHDataGrabber

		ENH: New color mode for write_graph

		ENH: You can now force MapNodes to be run serially

		ENH: Added ANTS based openfmri workflow

		ENH: MapNode now supports flattening of nested lists

		ENH: Support for headless mode using Xvfb

		ENH: nipype_display_crash has a debugging mode

		FIX: MRTrix tracking algorithms were ignoring mask parameters.

		FIX: FNIRT registration pathway and associated OpenFMRI example script

		FIX: spm12b compatibility for Model estimate

		FIX: Batch scheduler controls the number of maximum jobs properly

		FIX: Update for FSL 5.0.7 which deprecated Contrast Manager

Release 0.9.2 (January 31, 2014)

		FIX: DataFinder was broken due to a typo

		FIX: Order of DataFinder outputs was not guaranteed, it’s human sorted now

		ENH: New interfaces: Vnifti2Image, VtoMat

Release 0.9.1 (December 25, 2013)

		FIX: installation issues

Release 0.9.0 (December 20, 2013)

		ENH: SelectFiles: a streamlined version of DataGrabber

		ENH: new tools for defining workflows: JoinNode, synchronize and itersource

		ENH: W3C PROV support with optional RDF export built into Nipype

		ENH: Added support for Simple Linux Utility Resource Management (SLURM)

		
		ENH: AFNI interfaces refactor, prefix, suffix are replaced by

		“flexible_%s_templates”

		
		ENH: New SPM interfaces:

		
		spm.ResliceToReference,

		spm.DicomImport

		
		ENH: New AFNI interfaces:

		
		afni.AFNItoNIFTI

		afni.TCorr1D

		
		ENH: Several new interfaces related to Camino were added:

		
		camino.SFPICOCalibData

		camino.Conmat

		camino.QBallMX

		camino.LinRecon

		camino.SFPeaks

One outdated interface no longer part of Camino was removed:
- camino.Conmap

		
		ENH: Three new mrtrix interfaces were added:

		
		mrtrix.GenerateDirections

		mrtrix.FindShPeaks

		mrtrix.Directions2Amplitude

		
		ENH: New FSL interfaces:

		
		fsl.PrepareFieldmap

		fsl.TOPUP

		fsl.ApplyTOPUP

		fsl.Eddy

		
		ENH: New misc interfaces:

		
		FuzzyOverlap,

		P2PDistance

		ENH: New workflows: nipype.workflows.dmri.fsl.epi.[fieldmap_correction&topup_correction]

		ENH: Added simplified outputname generation for command line interfaces.

		ENH: Allow ants use a single mask image

		ENH: Create configuration option for parameterizing directories with hashes

		ENH: arrange nodes by topological sort with disconnected subgraphs

		ENH: uses the nidm iri namespace for uuids

		ENH: remove old reporting webpage

		ENH: Added support for Vagrant

		API: ‘name’ is now a positional argument for Workflow, Node, and MapNode constructors

		API: SPM now defaults to SPM8 or SPM12b job format

		API: DataGrabber and SelectFiles use human (or natural) sort now

		
		FIX: Several fixes related to Camino interfaces:

		
		ProcStreamlines would ignore many arguments silently (target, waypoint, exclusion ROIS, etc.)

		DTLUTGen would silently round the “step”, “snr” and “trace” parameters to integers

		PicoPDFs would not accept more than one lookup table

		PicoPDFs default pdf did not correspond to Camino default

		Track input model names were outdated (and would generate an error)

		Track numpds parameter could not be set for deterministic tractography

		FA created output files with erroneous extension

		FIX: Deals properly with 3d files in SPM Realign

		FIX: SPM with MCR fixed

		FIX: Cleaned up input and output spec metadata

		FIX: example openfmri script now makes the contrast spec a hashed input

		FIX: FILMGLS compatibility with FSL 5.0.5

		FIX: Freesurfer recon-all resume now avoids setting inputs

		FIX: File removal from node respects file associations img/hdr/mat, BRIK/HEAD

Release 0.8.0 (May 8, 2013)

		
		ENH: New interfaces: nipy.Trim, fsl.GLM, fsl.SigLoss, spm.VBMSegment, fsl.InvWarp,

		dipy.TensorMode

		ENH: Allow control over terminal output for commandline interfaces

		ENH: Added preliminary support for generating Python code from Workflows.

		
		ENH: New workflows for dMRI and fMRI pre-processing: added motion artifact correction

		with rotation of the B-matrix, and susceptibility correction for EPI imaging using
fieldmaps. Updated eddy_correct pipeline to support both dMRI and fMRI, and new parameters.

		ENH: Minor improvements to FSL’s FUGUE and FLIRT interfaces

		ENH: Added optional dilation of parcels in cmtk.Parcellate

		ENH: Interpolation mode added to afni.Resample

		
		ENH: Function interface can accept a list of strings containing import statements

		that allow external functions to run without their imports defined in the
function body

		ENH: Allow node configurations to override master configuration

		FIX: SpecifyModel works with 3D files correctly now.

Release 0.7.0 (Dec 18, 2012)

		ENH: Add basic support for LSF plugin.

		
		ENH: New interfaces: ICC, Meshfix, ants.Register, C3dAffineTool, ants.JacobianDeterminant,

		afni.AutoTcorrelate, DcmStack

		ENH: New workflows: ants template building (both using ‘ANTS’ and the new ‘antsRegistration’)

		
		ENH: New examples: how to use ANTS template building workflows (smri_ants_build_tmeplate),

		how to set SGE specific options (smri_ants_build_template_new)

		ENH: added no_flatten option to Merge

		ENH: added versioning option and checking to traits

		ENH: added deprecation metadata to traits

		ENH: Slicer interfaces were updated to version 4.1

Release 0.6.0 (Jun 30, 2012)

		API: display variable no longer encoded as inputs in commandline interfaces

		ENH: input hash not modified when environment DISPLAY is changed

		ENH: support for 3d files for TSNR calculation

		ENH: Preliminary support for graph submission with SGE, PBS and Soma Workflow

		
		ENH: New interfaces: MySQLSink, nipy.Similarity, WatershedBEM, MRIsSmooth,

		NetworkBasedStatistic, Atropos, N4BiasFieldCorrection, ApplyTransforms,
fs.MakeAverageSubject, epidewarp.fsl, WarpTimeSeriesImageMultiTransform,
AVScale, mri_ms_LDA

		ENH: simple interfaces for spm

		FIX: CompCor component calculation was erroneous

		FIX: filename generation for AFNI and PRELUDE

		FIX: improved slicer module autogeneration

		FIX: added missing options for BBRegsiter

		FIX: functionality of remove_unnecessary_ouputs cleaned up

		FIX: local hash check works with appropriate inputs

		FIX: Captures all stdout from commandline programs

		FIX: Afni outputs should inherit from TraitedSpec

Release 0.5.3 (Mar 23, 2012)

		FIX: SPM model generation when output units is in scans

Release 0.5.2 (Mar 14, 2012)

		API: Node now allows specifying node level configuration for SGE/PBS clusters

		API: Logging to file is disabled by default

		API: New location of log file -> .nipype/nipype.cfg

		ENH: Changing logging options via config works for distributed processing

		FIX: Unittests on debian (logging and ipython)

Release 0.5 (Mar 10, 2012)

		API: FSL defaults to Nifti when OUTPUTTYPE environment variable not found

		API: By default inputs are removed from Node working directory

		API: InterfaceResult class is now versioned and stores class type not instance

		API: Added FIRST interface

		
		API: Added max_jobs paramter to plugin_args. limits the number of jobs

		executing at any given point in time

		API: crashdump_dir is now a config execution option

		
		API: new config execution options for controlling hash checking, execution and

		logging behavior when running in distributed mode.

		API: Node/MapNode has new attribute that allows it to run on master thread.

		API: IPython plugin now invokes IPython 0.11 or greater

		API: Canned workflows are now all under a different package structure

		API: SpecifyModel event_info renamed to event_files

		
		API: DataGrabber is always being rerun (unless overwrite is set to False on

		Node level)

		
		API: “stop_on_first_rerun” does not stop for DataGrabber (unless overwrite is

		set to True on Node level)

		
		API: Output prefix can be set for spm nodes (SliceTiming, Realign, Coregister,

		Normalize, Smooth)

		ENH: Added fsl resting state workflow based on behzadi 2007 CompCorr method.

		ENH: TSNR node produces mean and std-dev maps; allows polynomial detrending

		ENH: IdentityNodes are removed prior to execution

		ENH: Added Michael Notter’s beginner’s guide

		ENH: Added engine support for status callback functions

		ENH: SPM create warped node

		ENH: All underlying interfaces (including python ones) are now optional

		ENH: Added imperative programming option with Nodes and caching

		ENH: Added debug mode to configuration

		ENH: Results can be stored and loaded without traits exceptions

		ENH: Added concurrent log handler for distributed writing to log file

		ENH: Reporting can be turned off using config

		ENH: Added stats files to FreeSurferOutput

		ENH: Support for Condor through qsub emulation

		
		ENH: IdentityNode with iterable expansion takes place after remaining Identity

		Node removal

		ENH: Crashfile display script added

		ENH: Added FmriRealign4d node wrapped from nipy

		ENH: Added TBSS workflows and examples

		ENH: Support for openfmri data processing

		ENH: Package version check

		FIX: Fixed spm preproc workflow to cater to multiple functional runs

		FIX: Workflow outputs displays nodes with empty outputs

		FIX: SUSAN workflow works without usans

		FIX: SGE fixed for reading custom templates

		FIX: warping in SPM realign, Dartel and interpolation parameters

		FIX: Fixed voxel size parameter in freesurfer mri_convert

		FIX: 4D images in spm coregister

		FIX: Works around matlab tty bug

		FIX: Overwriting connection raises exception

		
		FIX: Outputs are loaded from results and not stored in memory for during

		distributed operation

		FIX: SPM threshold uses SPM.mat name and improved error detection

		FIX: Removing directory contents works even when a node has no outputs

		FIX: DARTEL workflows will run only when SPM 8 is available

		FIX: SPM Normalize estimate field fixed

		FIX: hashmethod argument now used for calculating hash of old file

		FIX: Modelgen now allows FSL style event files

Release 0.4.1 (Jun 16, 2011)

		Minor bugfixes

Release 0.4 (Jun 11, 2011)

		
		API: Timestamp hashing does not use ctime anymore. Please update your hashes by

		running workflows with updatehash=True option
NOTE: THIS IS THE DEFAULT CONFIG NOW, so unless you updatehash, workflows will
rerun

		
		API: Workflow run function no longer supports (inseries, createdirsonly).

		Functions used in connect string must be pickleable

		API: SPM EstimateContrast: ignore_derivs replaced by use_derivs

		API: All interfaces: added new config option ignore_exception

		
		API: SpecifModel no longer supports (concatenate_runs, output_specs). high_pass_filter

		cutoff is mandatory (even if its set to np.inf). Additional interfaces
SpecifySPMModel and SpecifySparseModel support other types of data.

		API: fsl.DTIFit input “save” is now called “save_tensor”

		
		API: All inputs of IdentityInterfaces are mandatory by default. You can turn

		this off by specifying mandatory_inputs=False to the constructor.

		API: fsl FILMGLS input “autocorr_estimate” is now called “autocorr_estimate_only”

		
		API: fsl ContrastMgr now requires access to specific files (no longer accepts

		the result directory)

		
		API: freesurfer.GLMFit input “surf” is now a boolean with three corresponding

		inputs – subject_id, hemi, and surf_geo

		ENH: All commandline interfaces display stdout and stderr

		ENH: All interfaces raise exceptions on error with an option to suppress

		
		ENH: Supports a plugin interface for execution (current support for multiprocessing,

		IPython, SGE, PBS)

		ENH: MapNode runs in parallel under IPython, SGE, MultiProc, PBS

		ENH: Optionally allows keeping only required outputs

		
		ENH: New interface: utility.Rename to change the name of files, optionally

		using python string-formatting with inputs or regular expressions matching

		ENH: New interface: freesurfer.ApplyMask (mri_mask)

		ENH: New FSL interface – SwapDimensions (fslswapdim)

		ENH: Sparse models allow regressor scaling and temporal derivatives

		
		ENH: Added support for the component parts of FSL’s TBSS workflow (TBSSSkeleton

		and DistanceMap)

		ENH: dcm2nii interface exposes bvals, bvecs, reoriented and cropped images

		
		ENH: Added several higher-level interfaces to the fslmaths command:

		
		ChangeDataType, Threshold, MeanImage, IsotropicSmooth, ApplyMask, TemporalFilter
DilateImage, ErodeImage, SpatialFilter, UnaryMaths, BinaryMaths, MultiImageMaths

		ENH: added support for networx 1.4 and improved iterable expansion

		ENH: Replaced BEDPOSTX and EddyCurrent with nipype pipelines

		ENH: Ability to create a hierarchical dot file

		ENH: Improved debugging information for rerunning nodes

		ENH: Added ‘stop_on_first_rerun’ option

		ENH: Added support for Camino

		ENH: Added support for Camino2Trackvis

		ENH: Added support for Connectome Viewer

		BF: dcm2nii interface handles gzipped files correctly

		BF: FNIRT generates proper outputs

		BF: fsl.DTIFit now properly collects tensor volume

		BF: updatehash now removes old result hash file

Release 0.3.4 (Jan 12, 2011)

		API: hash values for float use a string conversion up to the 10th decimal place.

		API: Iterables in output path will always be generated as _var1_val1_var2_val2 pairs

		ENH: Added support to nipy: GLM fit, contrast estimation and calculating mask from EPI

		
		ENH: Added support for manipulating surface files in Freesurfer:

		
		projecting volume images onto the surface

		smoothing along the surface

		transforming a surface image from one subject to another

		using tksurfer to save pictures of the surface

		ENH: Added support for flash processing using FreeSurfer

		ENH: Added support for flirt matrix in BBRegister

		ENH: Added support for FSL convert_xfm

		ENH: hashes can be updated again without rerunning all nodes.

		ENH: Added multiple regression design for FSL

		ENH: Added SPM based Analyze to Nifti converter

		ENH: Added increased support for PyXNAT

		ENH: Added support for MCR-based binary version of SPM

		ENH: Added SPM node for calculating various threshold statistics

		ENH: Added distance and dissimilarity measurements

		BF: Diffusion toolkit gets installed

		
		BF: Changed FNIRT interface to accept flexible lists (rather than 4-tuples)

		on all options specific to different subsampling levels

Release 0.3.3 (Sep 16, 2010)

		API: subject_id in ModelSpec is now deprecated

		API: spm.Threshold
- does not need mask, beta, RPV anymore
- takes only one image (stat_image - mind the name change)
- works with SPM2 SPM.mat
- returns additional map - pre topological FDR

		ENH: Added support for Diffusion toolkit

		ENH: Added support for FSL slicer and overlay

		ENH: Added support for dcm2nii

		BF: DataSink properly handles lists of lists now

		BF: DataGrabber has option for raising Exception on getting empty lists

		BF: Traits logic for ‘requires’ metadata

		BF: allows workflows to be relocatable

		BF: nested workflows with connections don’t raise connection not found error

		BF: multiple workflows with identical nodenames and iterables do not create nestsed workflows

Release 0.3.2 (Aug 03, 2010)

Enhancements

		all outputs from nodes are now pickled as part of workflow processing

		added git developer docs

Bugs fixed

		FreeSurfer
		Fixed bugs in SegStats doctest

Release 0.3.1 (Jul 29, 2010)

Bugs fixed

		FreeSurfer
		Fixed bugs in glmfit and concatenate

		Added group t-test to freesurfer tutorial

Release 0.3 (Jul 27, 2010)

Incompatible changes

		Complete redesign of the Interface class - heavy use of Traits.

		Changes in the engine API - added Workflow and MapNode. Compulsory name argument.

Features added

		General:
		Type checking of inputs and outputs using Traits from ETS [http://code.enthought.com/projects/tool-suite.php].

		Support for nested workflows.

		Preliminary Slicer and AFNI support.

		New flexible DataGrabber node.

		AtlasPick and Threshold nodes.

		Preliminary support for XNAT.

		Doubled number of the tutorials.

		FSL:
		Added DTI processing nodes (note that TBSS nodes are still experimental).

		Recreated FEAT workflow.

		SPM:
		Added New Segment and many other nodes.

		Redesigned second level analysis.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/pipeline_tutorial.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Tutorial : Workflows

This section presents several tutorials on how to setup and use pipelines. Make
sure that you have the requirements satisfied and go through the steps required
for the analysis tutorials.

Essential reading

		Pipeline 101

		Pipeline 102

		Pipeline 103

		MapNode, iterfield, and iterables explained

		DataGrabber and DataSink explained

Beginner’s guide

By Michael Notter. Available here [http://miykael.github.com/nipype-beginner-s-guide/index.html]

Example workflows

Requirements

All tutorials

		Release 0.4 of nipype and it’s dependencies have been installed

Analysis tutorials

		FSL [http://www.fmrib.ox.ac.uk/fsl], FreeSurfer [http://surfer.nmr.mgh.harvard.edu], Camino [http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/pmwiki.php], ConnectomeViewer and MATLAB [http://www.mathworks.com] are available and
callable from the command line

		SPM [http://www.fil.ion.ucl.ac.uk/spm] 5/8 is installed and callable in matlab

		Space: 3-10 GB

Checklist for analysis tutorials

For the analysis tutorials, we will be using a slightly modified version of the
FBIRN Phase I travelling data set.

Step 0

Download and extract the Pipeline tutorial data (429MB). [http://sourceforge.net/projects/nipy/files/nipype/nipype-0.2/nipype-tutorial.tar.bz2/download]

(checksum: 56ed4b7e0aac5627d1724e9c10cd26a7)

Step 1.

Ensure that all programs are available by calling bet, matlab
and then which spm within matlab to ensure you have spm5/8 in your
matlab path.

Step 2.

You can now run the tutorial by typing python tutorial_script.py
within the nipype-tutorial directory. This will run a full first level
analysis on two subjects following by a 1-sample t-test on their first
level results. The next section goes through each section of the
tutorial script and describes what it is doing.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/nipypecmd.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Running Nipype Interfaces from the command line (nipype_cmd)

The primary use of Nipype [http://nipy.org/nipype/] is to build automated non-interactive pipelines.
However, sometimes there is a need to run some interfaces quickly from the command line.
This is especially useful when running Interfaces wrapping code that does not have
command line equivalents (nipy or SPM). Being able to run Nipype interfaces opens new
possibilities such as inclusion of SPM processing steps in bash scripts.

To run Nipype Interafces you need to use the nipype_cmd tool that should already be installed.
The tool allows you to list Interfaces available in a certain package:

$nipype_cmd nipype.interfaces.nipy

Available Interfaces:
 SpaceTimeRealigner
 Similarity
 ComputeMask
 FitGLM
 EstimateContrast
 FmriRealign4d

After selecting a particular Interface you can learn what inputs it requires:

$nipype_cmd nipype.interfaces.nipy ComputeMask --help

usage:nipype_cmd nipype.interfaces.nipy ComputeMask [-h] [--M M] [--cc CC]
 [--ignore_exception IGNORE_EXCEPTION]
 [--m M]
 [--reference_volume REFERENCE_VOLUME]
 mean_volume

Run ComputeMask

positional arguments:
 mean_volume mean EPI image, used to compute the threshold for the
 mask

optional arguments:
 -h, --help show this help message and exit
 --M M upper fraction of the histogram to be discarded
 --cc CC Keep only the largest connected component
 --ignore_exception IGNORE_EXCEPTION
 Print an error message instead of throwing an
 exception in case the interface fails to run
 --m M lower fraction of the histogram to be discarded
 --reference_volume REFERENCE_VOLUME
 reference volume used to compute the mask. If none is
 give, the mean volume is used.

Finally you can run run the Interface:

$nipype_cmd nipype.interfaces.nipy ComputeMask mean.nii.gz

All that from the command line without having to start python interpreter manually.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

_static/comment.png

users/debug.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Debugging Nipype Workflows

Throughout Nipype [http://nipy.org/nipype/] we try to provide meaningful error messages. If you run into
an error that does not have a meaningful error message please let us know so
that we can improve error reporting.

Here are some notes that may help debugging workflows or understanding
performance issues.

		Always run your workflow first on a single iterable (e.g. subject) and
gradually increase the execution distribution complexity (Linear->MultiProc->
SGE).

		Use the debug config mode. This can be done by setting:

from nipype import config
config.enable_debug_mode()

as the first import of your nipype script.

Note

Turning on debug will rerun your workflows and will rerun them after debugging
is turned off.

		There are several configuration options that can help with debugging. See
Configuration File for more details:

keep_inputs
remove_unnecessary_outputs
stop_on_first_crash
stop_on_first_rerun

		When running in distributed mode on cluster engines, it is possible for a
node to fail without generating a crash file in the crashdump directory. In
such cases, it will store a crash file in the batch directory.

		All Nipype crashfiles can be inspected with the nipype_display_crash
utility.

		Nipype determines the hash of the input state of a node. If any input
contains strings that represent files on the system path, the hash evaluation
mechanism will determine the timestamp or content hash of each of those
files. Thus any node with an input containing huge dictionaries (or lists) of
file names can cause serious performance penalties.

		For HUGE data processing, ‘stop_on_first_crash’:’False’, is needed to get the
bulk of processing done, and then ‘stop_on_first_crash’:’True’, is needed for
debugging and finding failing cases. Setting ‘stop_on_first_crash’: ‘False’
is a reasonable option when you would expect 90% of the data to execute
properly.

		Sometimes nipype will hang as if nothing is going on and if you hit Ctrl+C
you will get a ConcurrentLogHandler error. Simply remove the pypeline.lock
file in your home directory and continue.

		One many clusters with shared NFS mounts synchronization of files across
clusters may not happen before the typical NFS cache timeouts. When using
PBS/LSF/SGE/Condor plugins in such cases the workflow may crash because it
cannot retrieve the node result. Setting the job_finished_timeout can help:

workflow.config[‘execution’][‘job_finished_timeout’] = 65

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/tutorial_103.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Pipeline 103

Modifying inputs to pipeline nodes

Two nodes can be connected as shown below.

workflow.connect(realigner, 'realigned_files', smoother, 'infile')

The connection mechanism allows for a function to be evaluated on the
output field (‘realigned files’) of the source node (realigner) and
have its result be sent to the input field (‘infile’) of the
destination node (smoother).

def reverse_order(inlist):
 inlist.reverse()
 return inlist

workflow.connect(realigner, ('realigned_files', reverse_order),
 smoother, 'infile')

This can be extended to provide additional arguments to the
function. For example:

def reorder(inlist, order):
 return [inlist[item] for item in order]

workflow.connect(realigner, ('realigned_files', reorder, [2, 3, 0, 1]),
 smoother, 'infile')

In this example, we assume the realigned_files produces a list of 4
files. We can reorder these files in a particular order using the
modifier. Since such modifications are not tracked, they should be
used with extreme care and only in cases where absolutely
necessary. Often, one may find that it is better to insert a node
rather than a function.

Distributed computation

The pipeline engine has built-in support for distributed computation on
clusters. This can be achieved via plugin-modules for Python [http://www.python.org] multiprocessing or
the IPython [http://ipython.scipy.org] distributed computing interface or SGE/PBS/Condor, provided the
user sets up a workflow on a shared filesystem. These modules can take arguments
that specify additional distribution engine parameters. For IPython [http://ipython.scipy.org] the
environment needs to be configured for distributed operation. Details are
available at Using Nipype Plugins.

The default behavior is to run in series using the Linear plugin.

workflow.run()

In some cases it may be advantageous to run the workflow in series locally
(e.g., debugging, small-short pipelines, large memory only interfaces,
relocating working directory/updating hashes).

Debugging

When a crash happens while running a pipeline, a crashdump is stored in
the pipeline’s working directory unless the config option ‘crashdumpdir’
has been set (see :ref:config_options).

The crashdump is a compressed numpy file that stores a dictionary
containing three fields:

		node - the node that failed

		execgraph - the graph that the node came from

		traceback - from local or remote session for the failure.

We keep extending the information contained in the file and making
it easier to troubleshoot the failures. However, in the meantime the following
can help to recover information related to the failure.

in IPython [http://ipython.scipy.org] do (%pdb in IPython [http://ipython.scipy.org] is similar to dbstop if error in
Matlab):

from nipype.utils.filemanip import loadflat
crashinfo = loadflat('crashdump....npz')
%pdb
crashinfo['node'].run() # re-creates the crash
pdb> up #typically, but not necessarily the crash is one stack frame up
pdb> inspect variables
pdb>quit

Relocation of workdir

In some circumstances, one might decide to move their entire working
directory to a new location. It would be convenient to rerun only
necessary components of the pipeline, instead of running all the nodes
all over again. It is possible to do that with the
updatehash() function.

workflow.run(updatehash=True)

This will execute the workflow and update all the hash values that
were stored without actually running any of the interfaces.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

_images/forking_button.png
© Unwatch 4 Fork (i Pull Request

Issues (0) Downloads (0) Wiki(1) Graphs

quickstart.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Quickstart

Downloading and installing

		Download and install

		Running Nipype in a VM

Beginner’s guide

Beginner’s tutorials (IPython Notebooks). Available here [https://github.com/mwaskom/nipype_concepts]

Michael Notter’s Nipype guide. Available here [http://miykael.github.com/nipype-beginner-s-guide/index.html]

Dissecting Nipype Workflows. Available here [http://slideviewer.herokuapp.com/url/raw.github.com/nipy/nipype/master/examples/nipype_tutorial.ipynb?theme=sky]

Introductory slides [older]. Available here [http://satra.github.com/intro2nipype]

User guides

		Tutorial : Interfaces

		Tutorial : Workflows

		Using Nipype Plugins

		Debugging Nipype Workflows

Developer guides

		Interface Specifications

		How to wrap a command line tool

		How to wrap a MATLAB script

		How to wrap a Python script

		Working with nipype source code

Useful links for beginners

Getting started with Python - Tutorials. Available here [http://www.codecademy.com/en/tracks/python]

Python for Beginners Available here [https://www.python.org/about/gettingstarted/]

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

_images/proc2subj2fwhm.png
Realign spml1 Realign.spml0
Smooth.spml 11 ArtifactDetect rapidart] ArtifactDetect rapidart0 Smooth.spml10
SpecifyModel modelgen! 1 SpecifyModel modelgen01 SpecifyModel modelgen10

Smooth.spml0]

Smooth.spmI00
SpecifyModel model gen00

_images/graphviz-d8a03809a2996d89f2eb085be07ee8bec5ca7937.png

_images/graphviz-22410be71789d23c182acba3aa4f59801941d283.png

documentation.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Documentation

		Release:		0.11.0

		Date:		September 15, 2015, 17:26 PDT

Previous versions: 0.10.0 [http://nipy.org/nipype/0.10.0] 0.9.2 [http://nipy.org/nipype/0.9.2]

Guides

		
		User

		User Guide
		Download and install

		Running Nipype in a VM

		Tutorial : Interfaces

		Interface caching

		Tutorial : Workflows

		Using Nipype Plugins

		Configuration File

		Debugging Nipype Workflows

		DataGrabber and DataSink explained

		The SelectFiles Interfaces

		The Function Interface

		MapNode, iterfield, and iterables explained

		JoinNode, synchronize and itersource

		Model Specification for First Level fMRI Analysis

		Saving Workflows and Nodes to a file (experimental)

		Using SPM with MATLAB Common Runtime

		Using MIPAV, JIST, and CBS Tools

		Running Nipype Interfaces from the command line (nipype_cmd)

		Changes in Nipype

		
		Developer

		API

		Developer Guide
		Interface Specifications

		How to wrap a command line tool

		How to wrap a MATLAB script

		How to wrap a Python script

		Working with nipype source code

		Architecture (discussions from 2009)

		W3C PROV support

		Software using Nipype

Interfaces, Workflows and Examples

		
		Workflows

		Examples

		
		Interfaces

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

_static/reggie2.png
z
< g

_images/nipype_architecture_overview2.png
'
Interfaces
Uniform Python API

SPM FSL FreeSurfer
Interface Interface Interface

~),
SPM FSL FreeSurfer
(Matlab functions) (Cgr;rg;r::;l;ne (Cgrrférg;r:g:)lne

Idiosynchratic, Heterogeneous APIs

(" Workflow Engine R

(Map)Node [O) Workflow

@

Interface

Workflow
Q

@ D .run ()
5)

- inputs/outputs setting

- graph transformations
(e.g., iterable expansion)

NS ‘ "/
(" Execution Plugins)

\@/

_images/threecomponentpipe.png
IN | Realignspm

OouT

realigned_files

realignment_parameters

IN

infile

Smooth.spm | OUT

IN
realigned_files
realignment_parameters

ArtifactDetect rapidart

ouT

search.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

_images/graphviz-21aa3a9a2cd7a6375a3c4fd07666a22d942cec4e.png

_static/file.png

_images/componentarchitecture.png
Pipelining

Uniform Python API

SPM Interface FSL Interface Freesurfer Interface
SPM FSL Freesurfer
(Matlab functions) (Command-line (Command-line
programs) programs)

e S— S———
Idiosznchratic, Heterogenous APls

NetworkX
Graph
Manipulation

IPython
Parallelization

Z I
Cuurear T v

25

_static/nipype-banner-bg.png
Nipype:
Neuroimaging in Python
Pipelines and Interfaces

_static/nipy-logo-bg-138x120.png

_images/graphviz-b65596b443fdc105a6508acf176afcc6261aa65a.png

_static/down.png

api/index.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

API

		Release:		0.11.0

		Date:		September 15, 2015, 17:26 PDT

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

_images/graphviz-d8935623982e8671624a8884784c341ea02e4b00.png

devel/python_interface_devel.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

How to wrap a Python script

This is a minimal pure python interface. As you can see all you need to do is to
do is to define inputs, outputs, _run_interface() (not run()), and _list_outputs.

from nipype.interfaces.base import BaseInterface, \
 BaseInterfaceInputSpec, traits, File, TraitedSpec
from nipype.utils.filemanip import split_filename

import nibabel as nb
import numpy as np
import os

class SimpleThresholdInputSpec(BaseInterfaceInputSpec):
 volume = File(exists=True, desc='volume to be thresholded', mandatory=True)
 threshold = traits.Float(desc='everything below this value will be set to zero',
 mandatory=True)

class SimpleThresholdOutputSpec(TraitedSpec):
 thresholded_volume = File(exists=True, desc="thresholded volume")

class SimpleThreshold(BaseInterface):
 input_spec = SimpleThresholdInputSpec
 output_spec = SimpleThresholdOutputSpec

 def _run_interface(self, runtime):
 fname = self.inputs.volume
 img = nb.load(fname)
 data = np.array(img.get_data())

 active_map = data > self.inputs.threshold

 thresholded_map = np.zeros(data.shape)
 thresholded_map[active_map] = data[active_map]

 new_img = nb.Nifti1Image(thresholded_map, img.get_affine(), img.get_header())
 _, base, _ = split_filename(fname)
 nb.save(new_img, base + '_thresholded.nii')

 return runtime

 def _list_outputs(self):
 outputs = self._outputs().get()
 fname = self.inputs.volume
 _, base, _ = split_filename(fname)
 outputs["thresholded_volume"] = os.path.abspath(base + '_thresholded.nii')
 return outputs

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/saving_workflows.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Saving Workflows and Nodes to a file (experimental)

On top of the standard way of saving (i.e. serializing) objects in Python
(see pickle [http://docs.python.org/2/library/pickle.html]) Nipype
provides methods to turn Workflows and nodes into human readable code.
This is useful if you want to save a Workflow that you have generated
on the fly for future use.

To generate Python code for a Workflow use the export method:

from nipype.interfaces.fsl import BET, ImageMaths
from nipype.pipeline.engine import Workflow, Node, MapNode, format_node
from nipype.interfaces.utility import Function, IdentityInterface

bet = Node(BET(), name='bet')
bet.iterables = ('frac', [0.3, 0.4])

bet2 = MapNode(BET(), name='bet2', iterfield=['infile'])
bet2.iterables = ('frac', [0.4, 0.5])

maths = Node(ImageMaths(), name='maths')

def testfunc(in1):
 """dummy func
 """
 out = in1 + 'foo' + "out1"
 return out

funcnode = Node(Function(input_names=['a'], output_names=['output'], function=testfunc),
 name='testfunc')
funcnode.inputs.in1 = '-sub'
func = lambda x: x

inode = Node(IdentityInterface(fields=['a']), name='inode')

wf = Workflow('testsave')
wf.add_nodes([bet2])
wf.connect(bet, 'mask_file', maths, 'in_file')
wf.connect(bet2, ('mask_file', func), maths, 'in_file2')
wf.connect(inode, 'a', funcnode, 'in1')
wf.connect(funcnode, 'output', maths, 'op_string')

wf.export()

This will create a file “outputtestsave.py” with the following content:

from nipype.pipeline.engine import Workflow, Node, MapNode
from nipype.interfaces.utility import IdentityInterface
from nipype.interfaces.utility import Function
from nipype.utils.misc import getsource
from nipype.interfaces.fsl.preprocess import BET
from nipype.interfaces.fsl.utils import ImageMaths
Functions
func = lambda x: x
Workflow
testsave = Workflow("testsave")
Node: testsave.inode
inode = Node(IdentityInterface(fields=['a'], mandatory_inputs=True), name="inode")
Node: testsave.testfunc
testfunc = Node(Function(input_names=['a'], output_names=['output']), name="testfunc")
def testfunc_1(in1):
 """dummy func
 """
 out = in1 + 'foo' + "out1"
 return out

testfunc.inputs.function_str = getsource(testfunc_1)
testfunc.inputs.ignore_exception = False
testfunc.inputs.in1 = '-sub'
testsave.connect(inode, "a", testfunc, "in1")
Node: testsave.bet2
bet2 = MapNode(BET(), iterfield=['infile'], name="bet2")
bet2.iterables = ('frac', [0.4, 0.5])
bet2.inputs.environ = {'FSLOUTPUTTYPE': 'NIFTI_GZ'}
bet2.inputs.ignore_exception = False
bet2.inputs.output_type = 'NIFTI_GZ'
bet2.inputs.terminal_output = 'stream'
Node: testsave.bet
bet = Node(BET(), name="bet")
bet.iterables = ('frac', [0.3, 0.4])
bet.inputs.environ = {'FSLOUTPUTTYPE': 'NIFTI_GZ'}
bet.inputs.ignore_exception = False
bet.inputs.output_type = 'NIFTI_GZ'
bet.inputs.terminal_output = 'stream'
Node: testsave.maths
maths = Node(ImageMaths(), name="maths")
maths.inputs.environ = {'FSLOUTPUTTYPE': 'NIFTI_GZ'}
maths.inputs.ignore_exception = False
maths.inputs.output_type = 'NIFTI_GZ'
maths.inputs.terminal_output = 'stream'
testsave.connect(bet2, ('mask_file', func), maths, "in_file2")
testsave.connect(bet, "mask_file", maths, "in_file")
testsave.connect(testfunc, "output", maths, "op_string")

The file is ready to use and includes all the necessary imports.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/writing_custom_interfaces.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

		Interface Specifications
		Before you start

		Overview

		Nipype Interface Specifications

		Traited Attributes

		Defining an interface class

		Undefined inputs

		Example of inputs

		How to wrap a command line tool
		Defining inputs and outputs

		Command line executable

		Creating outputs on the fly

		How to wrap a MATLAB script
		Example 1

		Example 2

		How to wrap a Python script

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/mapnode_and_iterables.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

MapNode, iterfield, and iterables explained

In this chapter we will try to explain the concepts behind MapNode, iterfield,
and iterables.

MapNode and iterfield

Imagine that you have a list of items (lets say files) and you want to execute
the same node on them (for example some smoothing or masking). Some nodes accept
multiple files and do exactly the same thing on them, but some don’t (they expect
only one file). MapNode can solve this problem. Imagine you have the following
workflow:

[image: digraph mapnode_before {
"A" -> "B" -> "C";
}]

Node “A” outputs a list of files, but node “B” accepts only one file. Additionally
“C” expects a list of files. What you would like is to run “B” for every file in
the output of “A” and collect the results as a list and feed it to “C”. Something
like this:

[image: digraph mapnode_after {
"A" -> "B1" -> "C";
"A" -> "B2" -> "C";
"A" -> "B3" -> "C";
"A" -> "Bn" -> "C";
}]

The code to achieve this is quite simple

import nipype.pipeline.engine as pe
a = pe.Node(interface=A(), name="a")
b = pe.MapNode(interface=B(), name="b", iterfield=['in_file'])
c = pe.Node(interface=C(), name="c")

my_workflow = pe.Workflow(name="my_workflow")
my_workflow.connect([(a,b,[('out_files','in_file')]),
 (b,c,[('out_file','in_files')])
])

assuming that interfaces “A” and “C” have one input “in_files” and one output
“out_files” (both lists of files). Interface “B” has single file input “in_file”
and single file output “out_file”.

You probably noticed that you connect nodes as if “B” could accept and output
list of files. This is because it is wrapped using MapNode instead of Node. This
special version of node will (under the bonnet) create an instance of “B” for
every item in the list from the input. The compulsory argument “iterfield”
defines which input should it iterate over (for example in single file smooth
interface you would like to iterate over input files not the smoothing width). At
the end outputs are collected into a list again. In other words this is map and
reduce scenario.

You might have also noticed that the iterfield arguments expects a list of input
names instead of just one name. This suggests that there can be more than one!
Even though a bit confusing this is true. You can specify more than one input to
iterate over but the lists that you provide (for all the inputs specified in
iterfield) have to have the same length. MapNode will then pair the parameters up
and run the first instance with first set of parameters and second with second set
of parameters. For example, this code:

b = pe.MapNode(interface=B(), name="b", iterfield=['in_file', 'n'])
b.inputs.in_file = ['file', 'another_file', 'different_file']
b.inputs.n = [1,2,3]
b.run()

is almost the same as running

b1 = pe.Node(interface=B(), name="b1")
b1.inputs.in_file = 'file'
b1.inputs.n = 1

b2 = pe.Node(interface=B(), name="b2")
b2.inputs.in_file = 'another_file'
b2.inputs.n = 2

b3 = pe.Node(interface=B(), name="b3")
b3.inputs.in_file = 'different_file'
b3.inputs.n = 3

It is a rarely used feature, but you can sometimes find it useful.

In more advanced applications it is useful to be able to iterate over items
of nested lists (for example [[1,2],[3,4]]). MapNode allows you to do this
with the “nested=True” parameter. Outputs will preserve the same nested
structure as the inputs.

Iterables

Now imagine a different scenario. You have your workflow as before

[image: digraph iterables_before {
"A" -> "B" -> "C";
}]

and there are three possible values of one of the inputs node “B” you would like
to investigate (for example width of 2,4, and 6 pixels of a smoothing node). You
would like to see how different parameters in node “B” would influence everything
that depends on its outputs (node “C” in our example). Therefore the new graph
should look like this:

[image: digraph foo {
"A" -> "B1" -> "C1";
"A" -> "B2" -> "C2";
"A" -> "B3" -> "C3";
}]

Of course you can do it manually by creating copies of all the nodes for
different parameter set, but this can be very time consuming, especially when there
are more than one node taking inputs from “B”. Luckily nipype supports this
scenario! Its called iterables and and you use it this way:

import nipype.pipeline.engine as pe
a = pe.Node(interface=A(), name="a")
b = pe.Node(interface=B(), name="b")
b.iterables = ("n", [1, 2, 3])
c = pe.Node(interface=C(), name="c")

my_workflow = pe.Workflow(name="my_workflow")
my_workflow.connect([(a,b,[('out_file','in_file')]),
 (b,c,[('out_file','in_file')])
])

Assuming that you want to try out values 1, 2, and 3 of input “n” of the node
“B”. This will also create three different versions of node “C” - each with
inputs from instances of node “C” with different values of “n”.

Additionally, you can set multiple iterables for a node with a list of tuples
in the above format.

Iterables are commonly used to execute the same workflow for many subjects.
Usually one parametrises DataGrabber node with subject ID. This is achieved by
connecting an IdentityInterface in front of DataGrabber. When you set iterables of the
IdentityInterface to the list of subjects IDs, the same workflow will be executed
for every subject. See examples/fmri_spm to see this pattern in action.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

_images/graphviz-675dc232294d6cecf3284efeace35923746f8ac8.png

users/function_interface.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

The Function Interface

Most Nipype interfaces provide access to external programs, such as FSL
binaries or SPM routines. However, a special interface,
nipype.interfaces.utility.Function,
allows you to wrap arbitrary Python code in the Interface framework and
seamlessly integrate it into your workflows.

A Simple Function Interface

The most important component of a working Function interface is a Python
function. There are several ways to associate a function with a Function
interface, but the most common way will involve functions you code
yourself as part of your Nipype scripts. Consider the following function:

def add_two(val):
 return val + 2

This simple function takes a value, adds 2 to it, and returns that new value.

Just as Nipype interfaces have inputs and outputs, Python functions have
inputs, in the form of parameters or arguments, and outputs, in the form
of their return values. When you define a Function interface object with
an existing function, as in the case of add_two() above, you must pass the
constructor information about the function’s inputs, its outputs, and the
function itself. For example,

from nipype.interfaces.utility import Function
add_two_interface = Function(input_names=["val"],
 output_names=["out_val"],
 function=add_two)

Then you can set the inputs and run just as you would with any other
interface:

add_two_interface.inputs.val = 2
res = add_two_interface.run()
print res.outputs.out_val

Which would print 4.

Note that, if you are working interactively, the Function interface is
unable to use functions that are defined within your interpreter session.
(Specifically, it can’t use functions that live in the __main__ namespace).

Using External Packages

Chances are, you will want to write functions that do more complicated
processing, particularly using the growing stack of Python packages
geared towards neuroimaging, such as Nibabel [http://nipy.org/nibabel/], Nipy [http://nipy.org], or PyMVPA [http://www.pymvpa.org].

While this is completely possible (and, indeed, an intended use of the
Function interface), it does come with one important constraint. The
function code you write is executed in a standalone environment,
which means that any external functions or classes you use have to
be imported within the function itself:

def get_n_trs(in_file):
 import nibabel
 f = nibabel.load(in_file)
 return f.shape[-1]

Without explicitly importing Nibabel in the body of the function, this
would fail.

Alternatively, it is possible to provide a list of strings corresponding
to the imports needed to execute a function as a parameter of the Function
constructor. This allows for the use of external functions that do not
import all external definitions inside the function body.

Hello World - Function interface in a workflow

Contributed by: Hänel Nikolaus Valentin

The following snippet of code demonstrates the use of the function interface in
the context of a workflow. Note the use of import os within the function as
well as returning the absolute path from the Hello function. The import inside
is necessary because functions are coded as strings and do not have to be on the
PYTHONPATH. However any function called by this function has to be available on
the PYTHONPATH. The absolute path is necessary because all workflow nodes are
executed in their own directory and therefore there is no way of determining
that the input file came from a different directory:

import nipype.pipeline.engine as pe
from nipype.interfaces.utility import Function

def Hello():
 import os
 from nipype import logging
 iflogger = logging.getLogger('interface')
 message = "Hello "
 file_name = 'hello.txt'
 iflogger.info(message)
 with open(file_name, 'w') as fp:
 fp.write(message)
 return os.path.abspath(file_name)

def World(in_file):
 from nipype import logging
 iflogger = logging.getLogger('interface')
 message = "World!"
 iflogger.info(message)
 with open(in_file, 'a') as fp:
 fp.write(message)

hello = pe.Node(name='hello',
 interface=Function(input_names=[],
 output_names=['out_file'],
 function=Hello))
world = pe.Node(name='world',
 interface=Function(input_names=['in_file'],
 output_names=[],
 function=World))

pipeline = pe.Workflow(name='nipype_demo')
pipeline.connect([(hello, world, [('out_file', 'in_file')])])
pipeline.run()
pipeline.write_graph(graph2use='flat')

Advanced Use

To use an existing function object (as we have been doing so far) with a Function
interface, it must be passed to the constructor. However, it is also possible
to dynamically set how a Function interface will process its inputs using the
special function_str input.

This input takes not a function object, but actually a single string that can
be parsed to define a function. In the equivalent case to our example above,
the string would be

add_two_str = "def add_two(val):\n return val + 2\n"

Unlike when using a function object, this input can be set like any other,
meaning that you could write a function that outputs different function
strings depending on some run-time contingencies, and connect that output
the the function_str input of a downstream Function interface.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/architecture.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Architecture (discussions from 2009)

This section reflects notes and discussion between developers during the
start of the nipype project in 2009.

Design Guidelines

These are guidelines that the core nipype developers have agreed on:

Interfaces should keep all parameters affecting construction of the
appropriate command in the “input” bunch.

The .run() method of an Interface should include all required inputs
as explicitly named parameters, and they should take a default value
of None.

Any Interface should at a minimum support cwd as a command-line
argument to .run(). This may be accomplished by allowing cwd as an
element of the input Bunch, or handled as a separate case.

Relatedly, any Interface should output all files to cwd if it is set,
and otherwise to os.getcwd() (or equivalent).

We need to decide on a consistent policy towards the maintinence of
paths to files. It seems like the best strategy might be to do
absolute (os.realpath?) filenames by default, allowing for relative
paths by explicitly including something that doesn’t start with a
‘/’. This could include ‘.’ in some sort of path-spec.

Class attributes should never be modified by an instance of that class. And
probably not ever.

Providing for Provenance

The following is a specific discussion that should be thought out an more
generally applied to the way we handle auto-generation / or “sourcing” of
settings in an interface.

There are two possible sources (at a minimum) from which the interface instance could obtain “outputtype” - itself, or FSLInfo. Currently, the outputtype gets read from FSLInfo if self.outputtype (er, _outputtype?) is None.

In the case of other opt_map specifications, there are defaults that get specified if the value is None. For example output filenames are often auto-generated. If you look at the code for fsl.Bet for example, there is no way for the outfile to get picked up at the pipeline level, because it is a transient variable. This is OK, as the generation of the outfile name is contingent ONLY on inputs which ARE available to the pipeline machinery (i.e., via inspection of the Bet instance’s attributes).

However, with outputtype, we are in a situation in which “autogeneration” incorporates potentially transient information external to the instance itself. Thus, some care needs to be taken in always ensuring this information is hashable.

Design Principles

These are (currently) Dav Clark’s best guess at what the group might agree on:

It should be very easy to figure out what was done by the pypeline.

Code should support relocatability - this could be via URIs, relative
paths or potentially other mechanisms.

Unless otherwise called for, code should be thread safe, just in case.

The pipeline should make it easy to change aspects of an analysis with
minimal recomputation, downloading, etc. (This is not the case
currently - any change will overwrite the old node). Also, the fact
that multiple files get rolled into a single node is problematic for
similar reasons. E.g. - node([file1 ... file100]) will get recomputed
if we add only one file!.

However, it should also be easy to identify and delete things you
don’t need anymore.

Pipelines and bits of pipelines should be easy to share.

Things that are the same should be called the same thing in most
places. For interfaces that have an obvious meaning for the terms,
“infiles” and “outfile(s)”. If a file is in both the inputs and
outputs, it should be called the same thing in both places. If it is
produced by one interface and consumed by another, same thing should
be used.

Discussions

		Auto-generated filenames

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/tutorial_101.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Pipeline 101

A workflow or pipeline is built by connecting processes or nodes to each
other. In the context of nipype, every interface can be treated as a pipeline
node having defined inputs and outputs. Creating a workflow then is a matter
of connecting appropriate outputs to inputs. Currently, workflows are limited
to being directional and cannot have any loops, thereby creating an ordering to
data flow. The following nipype component architecture might help understanding
some of the tutorials presented here.

[image: ../_images/componentarchitecture.png]

My first pipeline

Although the most trivial workflow consists of a single node, we will
create a workflow with two nodes: a realign node that will send
the realigned functional data to a smoothing node. It is important to note that
setting up a workflow is separate from executing it.

1. Import appropriate modules

import nipype.interfaces.spm as spm # the spm interfaces
import nipype.pipeline.engine as pe # the workflow and node wrappers

2. Define nodes

Here we take instances of interfaces and make them pipeline compatible by
wrapping them with pipeline specific elements. To determine the inputs and outputs
of a given interface, please see Tutorial : Interfaces. Let’s
start with defining a realign node using the interface
nipype.interfaces.spm.Realign

realigner = pe.Node(interface=spm.Realign(), name='realign')
realigner.inputs.in_files = 'somefuncrun.nii'
realigner.inputs.register_to_mean = True

This would be equivalent to:

realigner = pe.Node(interface=spm.Realign(infile='somefuncrun.nii',
 register_to_mean = True),
 name='realign')

In Pythonic terms, this is saying that interface option in Node accepts
an instance of an interface. The inputs to this interface can be set either
later or while initializing the interface.

Note

In the above example, ‘somefuncrun.nii’ has to exist, otherwise the
commands won’t work. A node will check if appropriate inputs are
being supplied.

Similar to the realigner node, we now set up a smoothing node.

smoother = pe.Node(interface=spm.Smooth(fwhm=6), name='smooth')

Now we have two nodes with their inputs defined. Note that we have not defined
an input file for the smoothing node. This will be done by connecting the
realigner to the smoother in step 5.

3. Creating and configuring a workflow

Here we create an instance of a workflow and indicate that it should operate in
the current directory.

workflow = pe.Workflow(name='preproc')
workflow.base_dir = '.'

4. Adding nodes to workflows (optional)

If nodes are going to be connected (see step 5), this step is not
necessary. However, if you would like to run a node by itself without
connecting it to any other node, then you need to add it to the
workflow. For adding nodes, order of nodes is not important.

workflow.add_nodes([smoother, realigner])

This results in a workflow containing two isolated nodes:

[image: ../_images/smoothrealignunconnected.png]
5. Connecting nodes to each other

We want to connect the output produced by the node realignment to the input of
the node smoothing. This is done as follows.

workflow.connect(realigner, 'realigned_files', smoother, 'in_files')

Although not shown here, the following notation can be used to connect multiple outputs from one node to
multiple inputs (see step 7 below).

workflow.connect([(realigner, smoother, [('realigned_files', 'in_files')])])

This results in a workflow containing two connected nodes:

[image: ../_images/smoothrealignconnected.png]
6. Visualizing the workflow

The workflow is represented as a directed acyclic graph (DAG) and one
can visualize this using the following command. In fact, the pictures
above were generated using this.

workflow.write_graph()

This creates two files graph.dot and graph_detailed.dot and if
graphviz [http://www.graphviz.org/] is installed on your system it automatically converts it
to png files. If graphviz is not installed you can take the dot files
and load them in a graphviz visualizer elsewhere. You can specify how detailed
the graph is going to be, by using “graph2use” argument which takes the following
options:

		hierarchical - creates a graph showing all embedded workflows (default)

		orig - creates a top level graph without expanding internal workflow nodes

		flat - expands workflow nodes recursively

		exec - expands workflows to depict iterables (be careful - can generate really
large graphs)

7. Extend it

Now that you have seen a basic pipeline let’s add another node to the
above pipeline.

import nipype.algorithms.rapidart as ra
artdetect = pe.Node(interface=ra.ArtifactDetect(), name='artdetect')
artdetect.inputs.use_differences = [True, False]
art.inputs.use_norm = True
art.inputs.norm_threshold = 0.5
art.inputs.zintensity_threshold = 3
workflow.connect([(realigner, artdetect,
 [('realigned_files', 'realigned_files'),
 ('realignment_parameters','realignment_parameters')]
)])

Note

a) How an alternative form of connect was used to connect multiple
output fields from the realign node to corresponding input
fields of the artifact detection node.

b) The current visualization only shows connected input and
output ports. It does not show all the parameters that you have
set for a node.

This results in

[image: ../_images/threecomponentpipe.png]
8. Execute the workflow

Assuming that somefuncrun.nii is actually a file or you’ve
replaced it with an appropriate one, you can run the pipeline with:

workflow.run()

This should create a folder called preproc in your current directory,
inside which are three folders: realign, smooth and artdetect (the names
of the nodes). The outputs of these routines are in these folders.

		pipeline

		Connected series of processes (processes can be run parallel and or sequential)

		workflow

		(kind of synonymous to pipeline) = hosting the nodes

		node

		= switching-point within a pipeline, you can give it a name (in the above example e.g. realigner),
a node usually requires an or several inputs and will produce an or several outputs

		interface

		= specific software (e.g. FSL, SPM ...) are wrapped in interfaces, within a node instances of an
interface can be run

		modules

		for each interface the according modules have to be imported in the usual pythonic manner

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/index.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Developer Guide

		Release:		0.11.0

		Date:		September 15, 2015, 17:26 PDT

Since nipype is part of the NIPY [http://nipy.org] project, we follow the same
conventions documented in the NIPY Developers Guide [http://nipy.org/devel]. For bleeding-edge version help see Nightly documentation [http://www.mit.edu/~satra/nipype-nightly/]

		Interface Specifications
		Before you start

		Overview

		Nipype Interface Specifications

		Traited Attributes

		Defining an interface class

		Undefined inputs

		Example of inputs

		How to wrap a command line tool
		Defining inputs and outputs

		Command line executable

		Creating outputs on the fly

		How to wrap a MATLAB script
		Example 1

		Example 2

		How to wrap a Python script

		Working with nipype source code
		Introduction

		Install git

		Following the latest source

		Making a patch

		Git for development

		git resources

		Architecture (discussions from 2009)
		Design Guidelines

		Providing for Provenance

		Design Principles

		Discussions

		W3C PROV support
		Overview

		Software using Nipype
		Configurable Pipeline for the Analysis of Connectomes (C-PAC)

		BRAINSTools

		Brain Imaging Pipelines (BIPs)

		BROCCOLI

		Forward

		Limbo

		Lyman

		Medimsight

		MIA

		Mindboggle

		OpenfMRI

		serial functional Diffusion Mapping (sfDM)

		The Stanford CNI MRS Library (SMAL)

		tract_querier

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/interface_tutorial.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Tutorial : Interfaces

Specifying options

The nipype interface modules provide a Python interface to external
packages like FSL [http://www.fmrib.ox.ac.uk/fsl] and SPM [http://www.fil.ion.ucl.ac.uk/spm]. Within the module are a series of Python
classes which wrap specific package functionality. For example, in
the fsl module, the class nipype.interfaces.fsl.Bet wraps the
bet command-line tool. Using the command-line tool, one would
specify options using flags like -o, -m, -f <f>, etc...
However, in nipype, options are assigned to Python attributes and can
be specified in the following ways:

Options can be assigned when you first create an interface object:

import nipype.interfaces.fsl as fsl
mybet = fsl.BET(in_file='foo.nii', out_file='bar.nii')
result = mybet.run()

Options can be assigned through the inputs attribute:

import nipype.interfaces.fsl as fsl
mybet = fsl.BET()
mybet.inputs.in_file = 'foo.nii'
mybet.inputs.out_file = 'bar.nii'
result = mybet.run()

Options can be assigned when calling the run method:

import nipype.interfaces.fsl as fsl
mybet = fsl.BET()
result = mybet.run(in_file='foo.nii', out_file='bar.nii', frac=0.5)

Getting Help

In IPython [http://ipython.scipy.org] you can view the docstrings which provide some basic
documentation and examples.

In [2]: fsl.FAST?
Type: type
Base Class: <type 'type'>
String Form: <class 'nipype.interfaces.fsl.preprocess.FAST'>
Namespace: Interactive
File: /Users/satra/sp/nipype/interfaces/fsl/preprocess.py
Docstring:
 Use FSL FAST for segmenting and bias correction.

 For complete details, see the `FAST Documentation.
 <http://www.fmrib.ox.ac.uk/fsl/fast4/index.html>`_

 Examples

 >>> from nipype.interfaces import fsl
 >>> from nipype.testing import anatfile

 Assign options through the ``inputs`` attribute:

 >>> fastr = fsl.FAST()
 >>> fastr.inputs.in_files = anatfile
 >>> out = fastr.run() #doctest: +SKIP

Constructor information:
Definition: fsl.FAST(self, **inputs)

In [5]: spm.Realign?
Type: type
Base Class: <type 'type'>
String Form: <class 'nipype.interfaces.spm.preprocess.Realign'>
Namespace: Interactive
File: /Users/satra/sp/nipype/interfaces/spm/preprocess.py
Docstring:
 Use spm_realign for estimating within modality rigid body alignment

 http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf#page=25

 Examples

 >>> import nipype.interfaces.spm as spm
 >>> realign = spm.Realign()
 >>> realign.inputs.in_files = 'functional.nii'
 >>> realign.inputs.register_to_mean = True
 >>> realign.run() # doctest: +SKIP

Constructor information:
Definition: spm.Realign(self, **inputs)

All of the nipype.interfaces classes have an help method
which provides information on each of the options one can assign.

In [6]: fsl.BET.help()
Inputs

Mandatory:
 in_file: input file to skull strip

Optional:
 args: Additional parameters to the command
 center: center of gravity in voxels
 environ: Environment variables (default={})
 frac: fractional intensity threshold
 functional: apply to 4D fMRI data
 mutually exclusive: functional, reduce_bias
 mask: create binary mask image
 mesh: generate a vtk mesh brain surface
 no_output: Don't generate segmented output
 out_file: name of output skull stripped image
 outline: create surface outline image
 output_type: FSL output type
 radius: head radius
 reduce_bias: bias field and neck cleanup
 mutually exclusive: functional, reduce_bias
 skull: create skull image
 threshold: apply thresholding to segmented brain image and mask
 vertical_gradient: vertical gradient in fractional intensity threshold (-1, 1)

Outputs

mask_file: path/name of binary brain mask (if generated)
meshfile: path/name of vtk mesh file (if generated)
out_file: path/name of skullstripped file
outline_file: path/name of outline file (if generated)

In [7]: spm.Realign.help()
Inputs

Mandatory:
 in_files: list of filenames to realign

Optional:
 fwhm: gaussian smoothing kernel width
 interp: degree of b-spline used for interpolation
 jobtype: one of: estimate, write, estwrite (default=estwrite)
 matlab_cmd: None
 mfile: Run m-code using m-file (default=True)
 paths: Paths to add to matlabpath
 quality: 0.1 = fast, 1.0 = precise
 register_to_mean: Indicate whether realignment is done to the mean image
 separation: sampling separation in mm
 weight_img: filename of weighting image
 wrap: Check if interpolation should wrap in [x,y,z]
 write_interp: degree of b-spline used for interpolation
 write_mask: True/False mask output image
 write_which: determines which images to reslice
 write_wrap: Check if interpolation should wrap in [x,y,z]

Outputs

mean_image: Mean image file from the realignment
realigned_files: Realigned files
realignment_parameters: Estimated translation and rotation parameters

Our Interfaces and Algorithms documentation provides html versions of our
docstrings and includes links to the specific package
documentation. For instance, the nipype.interfaces.fsl.Bet
docstring has a direct link to the online BET Documentation.

FSL interface example

Using FSL [http://www.fmrib.ox.ac.uk/fsl] to realign a time_series:

import nipype.interfaces.fsl as fsl
realigner = fsl.McFlirt()
realigner.inputs.in_file='timeseries4D.nii'
result = realigner.run()

SPM interface example

Using SPM [http://www.fil.ion.ucl.ac.uk/spm] to realign a time-series:

import nipype.interfaces.spm as spm
from glob import glob
allepi = glob('epi*.nii') # this will return an unsorted list
allepi.sort()
realigner = spm.Realign()
realigner.inputs.in_files = allepi
result = realigner.run()

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/cmd_interface_devel.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

How to wrap a command line tool

The aim of this section is to describe how external programs and scripts can be
wrapped for use in Nipype either as interactive interfaces or within the
workflow/pipeline environment. Currently, there is support for command line
executables/scripts and matlab scripts. One can also create pure Python
interfaces. The key to defining interfaces is to provide a formal specification
of inputs and outputs and determining what outputs are generated given a set of
inputs.

Defining inputs and outputs

In Nipype we use Enthought Traits to define inputs and outputs of the
interfaces. This allows to introduce easy type checking. Inputs and outputs are
grouped into separate classes (usually suffixed with InputSpec and OutputSpec).
For example:

class ExampleInputSpec(TraitedSpec):
 input_volume = File(desc = "Input volume", exists = True,
 mandatory = True)
 parameter = traits.Int(desc = "some parameter")

class ExampleOutputSpec(TraitedSpec):
 output_volume = File(desc = "Output volume", exists = True)

For the Traits (and Nipype) to work correctly output and input spec has to be
inherited from TraitedSpec (however, this does not have to be direct
inheritance).

Traits (File, Int etc.) have different parameters (called metadata). In the
above example we have used the desc metadata which holds human readable
description of the input. The mandatory flag forces Nipype to throw an
exception if the input was not set. exists is a special flag that works only
for File traits and checks if the provided file exists. More details can be
found at Interface Specifications.

The input and output specifications have to be connected to the our example
interface class:

class Example(Interface):
 input_spec = ExampleInputSpec
 output_spec = ExampleOutputSpec

Where the names of the classes grouping inputs and outputs were arbitrary the
names of the fields within the interface they are assigned are not (it always
has to be input_spec and output_spec). Of course this interface does not do much
because we have not specified how to process the inputs and create the outputs.
This can be done in many ways.

Command line executable

As with all interfaces command line wrappers need to have inputs defined.
Command line input spec has to inherit from CommandLineInputSpec which adds two
extra inputs: environ (a dictionary of environmental variables), and args (a
string defining extra flags). In addition input spec can define the relation
between the inputs and the generated command line. To achieve this we have
added two metadata: argstr (string defining how the argument should be
formated) and position (number defining the order of the arguments).
For example

class ExampleInputSpec(CommandLineSpec):
 input_volume = File(desc = "Input volume", exists = True,
 mandatory = True, position = 0, argstr="%s")
 parameter = traits.Int(desc = "some parameter", argstr = "--param %d")

As you probably noticed the argstr is a printf type string with formatting
symbols. For an input defined in InputSpec to be included into the executed
commandline argstr has to be included. Additionally inside the main
interface class you need to specify the name of the executable by assigning it
to the _cmd field. Also the main interface class needs to inherit from
nipype.interfaces.base.CommandLine:

class Example(CommandLine):
 _cmd = 'my_command'
 input_spec = ExampleInputSpec
 output_spec = ExampleOutputSpec

There is one more thing we need to take care of. When the executable finishes
processing it will presumably create some output files. We need to know which
files to look for, check if they exist and expose them to whatever node would
like to use them. This is done by implementing _list_outputs method in the
main interface class. Basically what it does is assigning the expected output
files to the fields of our output spec:

def _list_outputs(self):
 outputs = self.output_spec().get()
 outputs['output_volume'] = os.path.abspath('name_of_the_file_this_cmd_made.nii')
 return outputs

Sometimes the inputs need extra parsing before turning into command line
parameters. For example imagine a parameter selecting between three methods:
“old”, “standard” and “new”. Imagine also that the command line accept this as
a parameter “–method=” accepting 0, 1 or 2. Since we are aiming to make nipype
scripts as informative as possible it’s better to define the inputs as
following:

class ExampleInputSpec(CommandLineSpec):
 method = traits.Enum("old", "standard", "new", desc = "method",
 argstr="--method=%d")

Here we’ve used the Enum trait which restricts input a few fixed options. If we
would leave it as it is it would not work since the argstr is expecting
numbers. We need to do additional parsing by overloading the following method
in the main interface class:

def _format_arg(self, name, spec, value):
 if name == 'method':
 return spec.argstr%{"old":0, "standard":1, "new":2}[value]
 return super(Example, self)._format_arg(name, spec, value)

Here is a minimalistic interface for the gzip command:

from nipype.interfaces.base import (
 TraitedSpec,
 CommandLineInputSpec,
 CommandLine,
 File
)
import os

class GZipInputSpec(CommandLineInputSpec):
 input_file = File(desc="File", exists=True, mandatory=True, argstr="%s")

class GZipOutputSpec(TraitedSpec):
 output_file = File(desc = "Zip file", exists = True)

class GZipTask(CommandLine):
 input_spec = GZipInputSpec
 output_spec = GZipOutputSpec
 cmd = 'gzip'

 def _list_outputs(self):
 outputs = self.output_spec().get()
 outputs['output_file'] = os.path.abspath(self.inputs.input_file + ".gz")
 return outputs

if __name__ == '__main__':

 zipper = GZipTask(input_file='an_existing_file')
 print zipper.cmdline
 zipper.run()

Creating outputs on the fly

In many cases, command line executables will require specifying output file
names as arguments on the command line. We have simplified this procedure with
three additional metadata terms: name_source, name_template,
keep_extension.

For example in the InvWarp class, the
inverse_warp parameter is the name of the output file that is created by
the routine.

class InvWarpInputSpec(FSLCommandInputSpec):
 ...
 inverse_warp = File(argstr='--out=%s', name_source=['warp'],
 hash_files=False, name_template='%s_inverse',
 ...

we add several metadata to inputspec.

		name_source

		indicates which field to draw from, this field must be the name of a File.

		hash_files

		indicates that the input for this field if provided should not be used in
computing the input hash for this interface.

		name_template (optional)

		overrides the default _generated suffix

		output_name (optional)

		name of the output (if this is not set same name as the input will be
assumed)

		keep_extension (optional - not used)

		if you want the extension from the input to be kept

In addition one can add functionality to your class or base class, to allow
changing extensions specific to package or interface

def self._overload_extension(self, value):
 return value #do whatever you want here with the name

Finally, in the outputspec make sure the name matches that of the inputspec.

class InvWarpOutputSpec(TraitedSpec):
 inverse_warp = File(exists=True,
 desc=('Name of output file, containing warps that '
 'are the "reverse" of those in --warp.'))

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/config_file.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Configuration File

Some of the system wide options of Nipype can be configured using a
configuration file. Nipype looks for the file in the local folder under the name
nipype.cfg and in ~/.nipype/nipype.cfg (in this order). If an option
will not be specified a default value will be assumed. The file is divided into
following sections:

Logging

		workflow_level

		How detailed the logs regarding workflow should be (possible values:
INFO and DEBUG; default value: INFO)

		filemanip_level

		How detailed the logs regarding file operations (for example overwriting
warning) should be (possible values: INFO and DEBUG; default value:
INFO)

		interface_level

		How detailed the logs regarding interface execution should be (possible
values: INFO and DEBUG; default value: INFO)

		log_to_file

		Indicates whether logging should also send the output to a file (possible
values: true and false; default value: false)

		log_directory

		Where to store logs. (string, default value: home directory)

		log_size

		Size of a single log file. (integer, default value: 254000)

		log_rotate

		How many rotation should the log file make. (integer, default value: 4)

Execution

		plugin

		This defines which execution plugin to use. (possible values: Linear,
MultiProc, SGE, IPython; default value: Linear)

		stop_on_first_crash

		Should the workflow stop upon first node crashing or try to execute as many
nodes as possible? (possible values: true and false; default value:
false)

		stop_on_first_rerun

		Should the workflow stop upon first node trying to recompute (by that we
mean rerunning a node that has been run before - this can happen due changed
inputs and/or hash_method since the last run). (possible values: true
and false; default value: false)

		hash_method

		Should the input files be checked for changes using their content (slow, but
100% accurate) or just their size and modification date (fast, but
potentially prone to errors)? (possible values: content and
timestamp; default value: content)

		keep_inputs

		Ensures that all inputs that are created in the nodes working directory are
kept after node execution (possible values: true and false; default
value: false)

		single_thread_matlab

		Should all of the Matlab interfaces (including SPM) use only one thread?
This is useful if you are parallelizing your workflow using MultiProc or
IPython on a single multicore machine. (possible values: true and
false; default value: true)

		display_variable

		What DISPLAY variable should all command line interfaces be
run with. This is useful if you are using xnest [http://www.x.org/archive/X11R7.5/doc/man/man1/Xnest.1.html]
or Xvfb [http://www.x.org/archive/X11R6.8.1/doc/Xvfb.1.html]
and you would like to redirect all spawned windows to
it. (possible values: any X server address; default value: not
set)

		remove_unnecessary_outputs

		This will remove any interface outputs not needed by the workflow. If the
required outputs from a node changes, rerunning the workflow will rerun the
node. Outputs of leaf nodes (nodes whose outputs are not connected to any
other nodes) will never be deleted independent of this parameter. (possible
values: true and false; default value: true)

		try_hard_link_datasink

		When the DataSink is used to produce an orginized output file outside
of nipypes internal cache structure, a file system hard link will be
attempted first. A hard link allow multiple file paths to point to the
same physical storage location on disk if the condisions allow. By
refering to the same physical file on disk (instead of copying files
byte-by-byte) we can avoid unnecessary data duplication. If hard links
are not supported for the source or destination paths specified, then
a standard byte-by-byte copy is used. (possible values: true and
false; default value: true)

		use_relative_paths

		Should the paths stored in results (and used to look for inputs)
be relative or absolute. Relative paths allow moving the whole
working directory around but may cause problems with
symlinks. (possible values: true and false; default
value: false)

		local_hash_check

		Perform the hash check on the job submission machine. This option minimizes
the number of jobs submitted to a cluster engine or a multiprocessing pool
to only those that need to be rerun. (possible values: true and
false; default value: true)

		job_finished_timeout

		When batch jobs are submitted through, SGE/PBS/Condor they could be killed
externally. Nipype checks to see if a results file exists to determine if
the node has completed. This timeout determines for how long this check is
done after a job finish is detected. (float in seconds; default value: 5)

		remove_node_directories (EXPERIMENTAL)

		Removes directories whose outputs have already been used
up. Doesn’t work with IdentiInterface or any node that patches
data through (without copying) (possible values: true and
false; default value: false)

		stop_on_unknown_version

		If this is set to True, an underlying interface will raise an error, when no
version information is available. Please notify developers or submit a
patch.

		parameterize_dirs

		If this is set to True, the node’s output directory will contain full
parameterization of any iterable, otherwise parameterizations over 32
characters will be replaced by their hash. (possible values: true and
false; default value: true)

		poll_sleep_duration

		This controls how long the job submission loop will sleep between submitting
all pending jobs and checking for job completion. To be nice to cluster
schedulers the default is set to 60 seconds.

		xvfb_max_wait

		Maximum time (in seconds) to wait for Xvfb to start, if the _redirect_x parameter of an Interface is True.

Example

[logging]
workflow_level = DEBUG

[execution]
stop_on_first_crash = true
hash_method = timestamp
display_variable = :1

Workflow.config property has a form of a nested dictionary reflecting the
structure of the .cfg file.

myworkflow = pe.Workflow()
myworkflow.config['execution'] = {'stop_on_first_rerun': 'True',
 'hash_method': 'timestamp'}

You can also directly set global config options in your workflow script. An
example is shown below. This needs to be called before you import the
pipeline or the logger. Otherwise logging level will not be reset.

from nipype import config
cfg = dict(logging=dict(workflow_level = 'DEBUG'),
 execution={'stop_on_first_crash': False,
 'hash_method': 'content'})
config.update_config(cfg)

Enabling logging to file

By default, logging to file is disabled. One can enable and write the file to
a location of choice as in the example below.

import os
from nipype import config, logging
config.update_config({'logging': {'log_directory': os.getcwd(),
 'log_to_file': True}})
logging.update_logging(config)

The logging update line is necessary to change the behavior of logging such as
output directory, logging level, etc.,.

Debug configuration

To enable debug mode, one can insert the following lines:

from nipype import config, logging
config.enable_debug_mode()
logging.update_logging(config)

In this mode the following variables are set:

config.set('execution', 'stop_on_first_crash', 'true')
config.set('execution', 'remove_unnecessary_outputs', 'false')
config.set('logging', 'workflow_level', 'DEBUG')
config.set('logging', 'interface_level', 'DEBUG')

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/matlab_interface_devel.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

How to wrap a MATLAB script

This is minimal script for wrapping MATLAB code. You should replace the MATLAB
code template, and define approriate inputs and outputs.

Example 1

from nipype.interfaces.matlab import MatlabCommand
from nipype.interfaces.base import TraitedSpec, BaseInterface, BaseInterfaceInputSpec, File
import os
from string import Template

class ConmapTxt2MatInputSpec(BaseInterfaceInputSpec):
 in_file = File(exists=True, mandatory=True)
 out_file = File('cmatrix.mat', usedefault=True)

class ConmapTxt2MatOutputSpec(TraitedSpec):
 out_file = File(exists=True)

class ConmapTxt2Mat(BaseInterface):
 input_spec = ConmapTxt2MatInputSpec
 output_spec = ConmapTxt2MatOutputSpec

 def _run_interface(self, runtime):
 d = dict(in_file=self.inputs.in_file,
 out_file=self.inputs.out_file)
 #this is your MATLAB code template
 script = Template("""in_file = ‘$in_file';
out_file = ‘$out_file';
ConmapTxt2Mat(in_file, out_file);
exit;
""").substitute(d)

 # mfile = True will create an .m file with your script and executed.
 # Alternatively
 # mfile can be set to False which will cause the matlab code to be
 # passed
 # as a commandline argument to the matlab executable
 # (without creating any files).
 # This, however, is less reliable and harder to debug
 # (code will be reduced to
 # a single line and stripped of any comments).

 mlab = MatlabCommand(script=script, mfile=True)
 result = mlab.run()
 return result.runtime

 def _list_outputs(self):
 outputs = self._outputs().get()
 outputs['out_file'] = os.path.abspath(self.inputs.out_file)
 return outputs

Example 2

By subclassing MatlabCommand for your main class, and MatlabInputSpec for your input and output spec, you gain access to some useful MATLAB hooks

import os
from nipype.interfaces.base import File, traits
from nipype.interfaces.matlab import MatlabCommand, MatlabInputSpec

class HelloWorldInputSpec(MatlabInputSpec):
 name = traits.Str(mandatory = True,
 desc = 'Name of person to say hello to')

class HelloWorldOutputSpec(MatlabInputSpec):
 matlab_output = traits.Str()

class HelloWorld(MatlabCommand):
 """ Basic Hello World that displays Hello <name> in MATLAB

 Returns

 matlab_output : capture of matlab output which may be
 parsed by user to get computation results

 Examples

 >>> hello = HelloWorld()
 >>> hello.inputs.name = 'hello_world'
 >>> out = hello.run()
 >>> print out.outputs.matlab_output
 """
 input_spec = HelloWorldInputSpec
 output_spec = HelloWorldOutputSpec

 def _my_script(self):
 """This is where you implement your script"""
 script = """
 disp('Hello %s Python')
 two = 1 + 1
 """%(self.inputs.name)
 return script

 def run(self, **inputs):
 ## inject your script
 self.inputs.script = self._my_script()
 results = super(MatlabCommand, self).run(**inputs)
 stdout = results.runtime.stdout
 # attach stdout to outputs to access matlab results
 results.outputs.matlab_output = stdout
 return results

 def _list_outputs(self):
 outputs = self._outputs().get()
 return outputs

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/grabbing_and_sinking.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

DataGrabber and DataSink explained

In this chapter we will try to explain the concepts behind DataGrabber and
DataSink.

Why do we need these interfaces?

A typical workflow takes data as input and produces data as the result of one or
more operations. One can set the data required by a workflow directly as
illustrated below.

from fsl_tutorial2 import preproc
preproc.base_dir = os.path.abspath('.')
preproc.inputs.inputspec.func = os.path.abspath('data/s1/f3.nii')
preproc.inputs.inputspec.struct = os.path.abspath('data/s1/struct.nii')
preproc.run()

Typical neuroimaging studies require running workflows on multiple subjects or
different parameterizations of algorithms. One simple approach to that would be
to simply iterate over subjects.

from fsl_tutorial2 import preproc
for name in subjects:
 preproc.base_dir = os.path.abspath('.')
 preproc.inputs.inputspec.func = os.path.abspath('data/%s/f3.nii'%name)
 preproc.inputs.inputspec.struct = os.path.abspath('data/%s/struct.nii'%name)
 preproc.run()

However, in the context of complex workflows and given that users typically
arrange their imaging and other data in a semantically hierarchical data store,
an alternative mechanism for reading and writing the data generated by a workflow
is often necessary. As the names suggest DataGrabber is used to get at data
stored in a shared file system while DataSink is used to store the data
generated by a workflow into a hierarchical structure on disk.

DataGrabber

DataGrabber is an interface for collecting files from hard drive. It is very
flexible and supports almost any file organization of your data you can imagine.

You can use it as a trivial use case of getting a fixed file. By default,
DataGrabber stores its outputs in a field called outfiles.

import nipype.interfaces.io as nio
datasource1 = nio.DataGrabber()
datasource1.inputs.base_directory = os.getcwd()
datasource1.inputs.template = 'data/s1/f3.nii'
results = datasource1.run()

Or you can get at all uncompressed NIfTI files starting with the letter ‘f’ in
all directories starting with the letter ‘s’.

datasource2.inputs.base_directory = '/mass'
datasource2.inputs.template = 'data/s*/f*.nii'

Two special inputs were used in these previous cases. The input base_directory
indicates in which directory to search, while the input template indicates the
string template to match. So in the previous case datagrabber is looking for
path matches of the form /mass/data/s*/f*.

Note

When used with wildcards (e.g., s* and f* above) DataGrabber does not return
data in sorted order. In order to force it to return data in sorted order, one
needs to set the input sorted = True. However, when explicitly specifying an
order as we will see below, sorted should be set to False.

More useful cases arise when the template can be filled by other inputs. In the
example below, we define an input field for datagrabber called run. This is
then used to set the template (see %d in the template).

datasource3 = nio.DataGrabber(infields=['run'])
datasource3.inputs.base_directory = os.getcwd()
datasource3.inputs.template = 'data/s1/f%d.nii'
datasource3.inputs.run = [3, 7]

This will return files basedir/data/s1/f3.nii and basedir/data/s1/f7.nii. We
can take this a step further and pair subjects with runs.

datasource4 = nio.DataGrabber(infields=['subject_id', 'run'])
datasource4.inputs.template = 'data/%s/f%d.nii'
datasource4.inputs.run = [3, 7]
datasource4.inputs.subject_id = ['s1', 's3']

This will return files basedir/data/s1/f3.nii and basedir/data/s3/f7.nii.

A more realistic use-case

In a typical study one often wants to grab different files for a given subject
and store them in semantically meaningful outputs. In the following example, we
wish to retrieve all the functional runs and the structural image for the subject ‘s1’.

datasource = nio.DataGrabber(infields=['subject_id'], outfields=['func', 'struct'])
datasource.inputs.base_directory = 'data'
datasource.inputs.template = '*'
datasource.inputs.field_template = dict(func='%s/f%d.nii',
 struct='%s/struct.nii')
datasource.inputs.template_args = dict(func=[['subject_id', [3,5,7,10]]],
 struct=[['subject_id']])
datasource.inputs.subject_id = 's1'

Two more fields are introduced: field_template and template_args. These
fields are both dictionaries whose keys correspond to the outfields
keyword. The field_template reflects the search path for each output field,
while the template_args reflect the inputs that satisfy the template. The
inputs can either be one of the named inputs specified by the infields keyword
arg or it can be raw strings or integers corresponding to the template. For the
func output, the %s in the field_template is satisfied by subject_id
and the %d is field in by the list of numbers.

Note

We have not set sorted to True as we want the DataGrabber to return the
functional files in the order it was specified rather than in an alphabetic
sorted order.

DataSink

A workflow working directory is like a cache. It contains not only the
outputs of various processing stages, it also contains various extraneous
information such as execution reports, hashfiles determining the input state of
processes. All of this is embedded in a hierarchical structure that reflects the
iterables that have been used in the workflow. This makes navigating the working
directory a not so pleasant experience. And typically the user is interested in
preserving only a small percentage of these outputs. The DataSink interface can
be used to extract components from this cache and store it at a different
location. For XNAT-based storage, see XNATSink .

Note

Unlike other interfaces, a DataSink‘s inputs are defined and created by using
the workflow connect statement. Currently disconnecting an input from the
DataSink does not remove that connection port.

Let’s assume we have the following workflow.

[image: digraph simple_workflow {
"InputNode" -> "Realign" -> "DataSink";
"InputNode" -> "DataSink";
}]

The following code segment defines the DataSink node and sets the base_directory
in which all outputs will be stored. The container input creates a
subdirectory within the base_directory. If you are iterating a workflow over
subjects, it may be useful to save it within a folder with the subject id.

datasink = pe.Node(nio.DataSink(), name='sinker')
datasink.inputs.base_directory = '/path/to/output'
workflow.connect(inputnode, 'subject_id', datasink, 'container')

If we wanted to save the realigned files and the realignment parameters to the
same place the most intuitive option would be:

workflow.connect(realigner, 'realigned_files', datasink, 'motion')
workflow.connect(realigner, 'realignment_parameters', datasink, 'motion')

However, this will not work as only one connection is allowed per input port. So
we need to create a second port. We can store the files in a separate folder.

workflow.connect(realigner, 'realigned_files', datasink, 'motion')
workflow.connect(realigner, 'realignment_parameters', datasink, 'motion.par')

The period (.) indicates that a subfolder called par should be created. But if
we wanted to store it in the same folder as the realigned files, we would use
the .@ syntax. The @ tells the DataSink interface to not create the
subfolder. This will allow us to create different named input ports for DataSink
and allow the user to store the files in the same folder.

workflow.connect(realigner, 'realigned_files', datasink, 'motion')
workflow.connect(realigner, 'realignment_parameters', datasink, 'motion.@par')

The syntax for the input port of DataSink takes the following form:

string[[.[@]]string[[.[@]]string] ...]
where parts between paired [] are optional.

MapNode

In order to use DataSink inside a MapNode, it’s
inputs have to be defined inside the constructor using the infields keyword
arg.

Parameterization

As discussed in MapNode, iterfield, and iterables explained, one can run a workflow iterating
over various inputs using the iterables attribute of nodes. This means that a
given workflow can have multiple outputs depending on how many iterables are
there. Iterables create working directory subfolders such as
_iterable_name_value. The parameterization input parameter controls whether
the data stored using DataSink is in a folder structure that contains this
iterable information or not. It is generally recommended to set this to True
when using multiple nested iterables.

Substitutions

The substitutions and substitutions_regexp inputs allow users to modify the
output destination path and name of a file. Substitutions are a list of 2-tuples
and are carried out in the order in which they were entered. Assuming that the
output path of a file is:

/root/container/_variable_1/file_subject_realigned.nii

we can use substitutions to clean up the output path.

datasink.inputs.substitutions = [('_variable', 'variable'),
 ('file_subject_', '')]

This will rewrite the file as:

/root/container/variable_1/realigned.nii

Note

In order to figure out which substitutions are needed it is often useful to
run the workflow on a limited set of iterables and then determine the
substitutions.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/software_using_nipype.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Software using Nipype

Configurable Pipeline for the Analysis of Connectomes (C-PAC)

C-PAC [http://fcp-indi.github.io/] is an open-source software pipeline for automated preprocessing and analysis of resting-state fMRI data. C-PAC builds upon a robust set of existing software packages including AFNI, FSL, and ANTS, and makes it easy for both novice users and experts to explore their data using a wide array of analytic tools. Users define analysis pipelines by specifying a combination of preprocessing options and analyses to be run on an arbitrary number of subjects. Results can then be compared across groups using the integrated group statistics feature. C-PAC makes extensive use of Nipype Workflows and Interfaces.

BRAINSTools

BRAINSTools [http://brainsia.github.io/BRAINSTools/] is a suite of tools for medical image processing focused on brain analysis.

Brain Imaging Pipelines (BIPs)

BIPs [https://github.com/INCF/BrainImagingPipelines] is a set of predefined Nipype workflows coupled with a graphical interface and ability to save and share workflow configurations. It provides both Nipype Workflows and Interfaces.

BROCCOLI

BROCCOLI [https://github.com/wanderine/BROCCOLI/] is a piece of software for fast fMRI analysis on many core CPUs and GPUs. It provides Nipype Interfaces.

Forward

Forward [http://cyclotronresearchcentre.github.io/forward/] is set of tools simplifying the preparation of accurate electromagnetic head models for EEG forward modeling. It uses Nipype Workflows and Interfaces.

Limbo

Limbo [https://github.com/Gilles86/in_limbo] is a toolbox for finding brain regions that are neither significantly active nor inactive, but rather “in limbo”. It was build using custom Nipype Interfaces and Workflows.

Lyman

Lyman [http://stanford.edu/~mwaskom/software/lyman/] is a high-level ecosystem for analyzing task based fMRI neuroimaging data using open-source software. It aims to support an analysis workflow that is powerful, flexible, and reproducible, while automating as much of the processing as possible. It is build upon Nipype Workflows and Interfaces.

Medimsight

Medimsight [https://www.medimsight.com] is a commercial service medical imaging cloud platform. It uses Nipype to interface with various neuroimaging software.

MIA

MIA [http://mia.sourceforge.net] MIA is a a toolkit for gray scale medical image analysis. It provides Nipype interfaces for easy integration with other software.

Mindboggle

Mindboggle [http://mindboggle.info/users/README.html] software package automates shape analysis of anatomical labels and features extracted from human brain MR image data. Mindboggle can be run as a single command, and can be easily installed as a cross-platform virtual machine for convenience and reproducibility of results. Behind the scenes, open source Python and C++ code run within a Nipype pipeline framework.

OpenfMRI

OpenfMRI [https://openfmri.org/] is a repository for task based fMRI datasets. It uses Nipype for automated analysis of the deposited data.

serial functional Diffusion Mapping (sfDM)

‘sfDM <http://github.com/PIRCImagingTools/sfDM>’_ is a software package for looking at changes in diffusion profiles of different tissue types across time. It uses Nipype to process the data.

The Stanford CNI MRS Library (SMAL)

SMAL [http://cni.github.io/MRS/doc/_build/html/index.html] is a library providing algorithms and methods to read and analyze data from Magnetic Resonance Spectroscopy (MRS) experiments. It provides an API for fitting models of the spectral line-widths of several different molecular species, and quantify their relative abundance in human brain tissue. SMAL uses Nipype Workflows and Interfaces.

tract_querier

tract_querier [https://github.com/demianw/tract_querier] is a White Matter Query Language tool. It provides Nipype interfaces.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/filename_generation.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Auto-generated filenames

In refactoring the inputs in the traitlets branch I’m working through
the different ways that filenames are generated and want to make sure
the interface is consistent. The notes below are all using fsl.Bet as
that’s the first class we’re Traiting. Other interface classes may
handle this differently, but should agree on a convention and apply it
across all Interfaces (if possible).

Current Rules

These rules are for fsl.Bet, but it appears they are the same for all
fsl and spm Interfaces.

Bet has two mandatory parameters, infile and outfile. These
are the rules for how they are handled in different use cases.

		If infile or outfile are absolute paths, they are used
as-is and never changed. This allows users to override any
filename/path generation.

		If outfile is not specified, a filename is generated.

		Generated filenames (at least for outfile) are based on:

		infile, the filename minus the extensions.

		A suffix specified by the Interface. For example Bet uses
_brain suffix.

		The current working directory, os.getcwd(). Example:

If infile == ‘foo.nii’ and the cwd is /home/cburns then
generated outfile for Bet will be
/home/cburns/foo_brain.nii.gz

		If outfile is not an absolute path, for instance just a
filename, the absolute path is generated using
os.path.realpath. This absolute path is needed to make sure the
packages (Bet in this case) write the output file to a location of
our choosing. The generated absolute path is only used in the
cmdline at runtime and does __not__ overwrite the class attr
self.inputs.outfile. It is generated only when the cmdline
is invoked.

Walking through some examples

In this example we assign infile directly but outfile is
generated in Bet._parse_inputs based on infile. The generated
outfile is only used in the cmdline at runtime and not stored in
self.inputs.outfile. This seems correct.

In [15]: from nipype.interfaces import fsl

In [16]: mybet = fsl.Bet()

In [17]: mybet.inputs.infile = 'foo.nii'

In [18]: res = mybet.run()

In [19]: res.runtime.cmdline
Out[19]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/foo_brain.nii.gz'

In [21]: mybet.inputs
Out[21]: Bunch(center=None, flags=None, frac=None, functional=None,
infile='foo.nii', mask=None, mesh=None, nooutput=None, outfile=None,
outline=None, radius=None, reduce_bias=None, skull=None, threshold=None,
verbose=None, vertical_gradient=None)

In [24]: mybet.cmdline
Out[24]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/foo_brain.nii.gz'

In [25]: mybet.inputs.outfile

In [26]: mybet.inputs.infile
Out[26]: 'foo.nii'

We get the same behavior here when we assign infile at initialization:

In [28]: mybet = fsl.Bet(infile='foo.nii')

In [29]: mybet.cmdline
Out[29]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/foo_brain.nii.gz'

In [30]: mybet.inputs
Out[30]: Bunch(center=None, flags=None, frac=None, functional=None,
infile='foo.nii', mask=None, mesh=None, nooutput=None, outfile=None,
outline=None, radius=None, reduce_bias=None, skull=None, threshold=None,
verbose=None, vertical_gradient=None)

In [31]: res = mybet.run()

In [32]: res.runtime.cmdline
Out[32]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/foo_brain.nii.gz'

Here we specify absolute paths for both infile and
outfile. The command line’s look as expected:

In [53]: import os

In [54]: mybet = fsl.Bet()

In [55]: mybet.inputs.infile = os.path.join('/Users/cburns/tmp/junk', 'foo.nii')
In [56]: mybet.inputs.outfile = os.path.join('/Users/cburns/tmp/junk', 'bar.nii')

In [57]: mybet.cmdline
Out[57]: 'bet /Users/cburns/tmp/junk/foo.nii /Users/cburns/tmp/junk/bar.nii'

In [58]: res = mybet.run()

In [59]: res.runtime.cmdline
Out[59]: 'bet /Users/cburns/tmp/junk/foo.nii /Users/cburns/tmp/junk/bar.nii'

Here passing in a new outfile in the run method will update
mybet.inputs.outfile to the passed in value. Should this be the
case?

In [110]: mybet = fsl.Bet(infile='foo.nii', outfile='bar.nii')

In [111]: mybet.inputs.outfile
Out[111]: 'bar.nii'

In [112]: mybet.cmdline
Out[112]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/bar.nii'

In [113]: res = mybet.run(outfile = os.path.join('/Users/cburns/tmp/junk', 'not_bar.nii'))

In [114]: mybet.inputs.outfile
Out[114]: '/Users/cburns/tmp/junk/not_bar.nii'

In [115]: mybet.cmdline
Out[115]: 'bet foo.nii /Users/cburns/tmp/junk/not_bar.nii'

In this case we provide outfile but not as an absolue path, so the
absolue path is generated and used for the cmdline when run, but
mybet.inputs.outfile is not updated with the absolute path.

In [74]: mybet = fsl.Bet(infile='foo.nii', outfile='bar.nii')

In [75]: mybet.inputs.outfile
Out[75]: 'bar.nii'

In [76]: mybet.cmdline
Out[76]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/bar.nii'

In [77]: res = mybet.run()

In [78]: res.runtime.cmdline
Out[78]: 'bet foo.nii /Users/cburns/src/nipy-sf/nipype/trunk/nipype/interfaces/tests/bar.nii'

In [80]: res.interface.inputs.outfile
Out[80]: 'bar.nii'

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/provenance.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

W3C PROV support

Overview

We’re using the the W3C PROV data model [http://www.w3.org/TR/prov-dm/] to
capture and represent provenance in Nipype.

For an overview see:

PROV-DM overview [http://slideviewer.herokuapp.com/url/raw.github.com/ni-/notebooks/master/NIDMIntro.ipynb]

Each interface writes out a provenance.json (currently prov-json) or
provenance.rdf (if rdflib is available) file. The workflow engine can also
write out a provenance of the workflow if instructed.

This is very much an experimental feature as we continue to refine how exactly
the provenance should be stored and how such information can be used for
reporting or reconstituting workflows. By default provenance writing is disabled
for the 0.9 release, to enable insert the following code at the top of your
script:

>>> from nipype import config
>>> config.enable_provenance()

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/interface_specs.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Interface Specifications

Before you start

Nipype is a young project maintained by an enthusiastic group of developers.
Even though the documentation might be sparse or cryptic at times we strongly
encourage you to contact us on the official nipype developers mailing list in
case of any troubles: nipy-devel@neuroimaging.scipy.org (we are sharing a
mailing list with the nipy community therefore please add [nipype] to the
messsage title).

Overview

We’re using the Enthought Traits [http://code.enthought.com/projects/traits/] package for all of our
inputs and outputs. Traits allows us to validate user inputs and
provides a mechanism to handle all the special cases in a simple and
concise way though metadata. With the metadata, each input/output can
have an optional set of metadata attributes (described in more detail
below). The machinery for handling the metadata is located in the
base classes, so all subclasses use the same code to handle these
cases. This is in contrast to our previous code where every class
defined it’s own _parse_inputs, run and aggregate_outputs methods to
handle these cases. Which of course leads to a dozen different ways
to solve the same problem.

Traits is a big package with a lot to learn in order to take full
advantage of. But don’t be intimidated! To write a Nipype Trait
Specification, you only need to learn a few of the basics of Traits.
Here are a few starting points in the documentation:

		What are Traits? The Introduction in the User Manual [http://code.enthought.com/projects/traits/docs/html/traits_user_manual/intro.html]
gives a brief description of the functionality traits provides.

		Traits and metadata. The second section of the User Manual [http://code.enthought.com/projects/traits/docs/html/traits_user_manual/defining.html]
gives more details on traits and how to use them. Plus there a
section describing metadata, including the metadata all traits have.

		If your interested in more of a big picture overview, Gael wrote
a good tutorial [http://code.enthought.com/projects/traits/docs/html/tutorials/traits_ui_scientific_app.html]
that shows how to write a scientific application using traits for
the benefit of the generated UI components. (For now, Nipype is not
taking advantage of the generated UI feature of traits.)

Traits version

We’re using Traits version 3.x which can be install as part of EPD [http://enthought.com/products/epd.php] or from pypi [http://pypi.python.org/pypi/Traits/3.3.0]

More documentation

Not everything is documented in the User Manual, in those cases the
enthought-dev mailing list [https://mail.enthought.com/mailman/listinfo/enthought-dev] or the
API docs [http://code.enthought.com/projects/files/ETS32_API/enthought.traits.html]
is your next place to look.

Nipype Interface Specifications

Each interface class defines two specifications: 1) an InputSpec and
2) an OutputSpec. Each of these are prefixed with the class name of
the interfaces. For example, Bet has these specs:

		BETInputSpec

		BETOutputSpec

Each of these Specs are classes, derived from a base TraitedSpec class
(more on these below). The InputSpec consists of attributes which
correspond to different parameters for the tool they wrap/interface.
In the case of a command-line tool like Bet, the InputSpec attributes
correspond to the different command-line parameters that can be passed
to Bet. If you are familiar with the Nipype 0.2 code-base, these
attributes are the same as the keys in the opt_map dictionaries. When
an interfaces class is instantiated, the InputSpec is bound to the
inputs attribute of that object. Below is an example of how the
inputs appear to a user for Bet:

>>> from nipype.interfaces import fsl
>>> bet = fsl.BET()
>>> type(bet.inputs)
<class 'nipype.interfaces.fsl.preprocess.BETInputSpec'>
>>> bet.inputs.<TAB>
bet.inputs.__class__ bet.inputs.center
bet.inputs.__delattr__ bet.inputs.environ
bet.inputs.__doc__ bet.inputs.frac
bet.inputs.__getattribute__ bet.inputs.functional
bet.inputs.__hash__ bet.inputs.hashval
bet.inputs.__init__ bet.inputs.infile
bet.inputs.__new__ bet.inputs.items
bet.inputs.__reduce__ bet.inputs.mask
bet.inputs.__reduce_ex__ bet.inputs.mesh
bet.inputs.__repr__ bet.inputs.nooutput
bet.inputs.__setattr__ bet.inputs.outfile
bet.inputs.__str__ bet.inputs.outline
bet.inputs._generate_handlers bet.inputs.outputtype
bet.inputs._get_hashval bet.inputs.radius
bet.inputs._hash_infile bet.inputs.reduce_bias
bet.inputs._xor_inputs bet.inputs.skull
bet.inputs._xor_warn bet.inputs.threshold
bet.inputs.args bet.inputs.vertical_gradient

Each Spec inherits from a parent Spec. The parent Specs provide
attribute(s) that are common to all child classes. For example, FSL
InputSpecs inherit from interfaces.fsl.base.FSLTraitedSpec.
FSLTraitedSpec defines an outputtype attribute, which stores the
file type (NIFTI, NIFTI_PAIR, etc...) for all generated output files.

InputSpec class hierarchy

Below is the current class hierarchy for InputSpec classes (from
base class down to subclasses).:

TraitedSpec: Nipype’s primary base class for all Specs.
Provides initialization, some nipype-specific methods and any trait
handlers we define. Inherits from traits.HasTraits.

BaseInterfaceInputSpec: Defines inputs common to all
Interfaces (ignore_exception). If in doubt inherit from this.

CommandLineInputSpec: Defines inputs common to all
command-line classes (args and environ)

FSLTraitedSpec: Defines inputs common to all FSL classes
(outputtype)

SPMCommandInputSpec: Defines inputs common to all SPM classes (matlab_cmd, path, and mfile)

FSTraitedSpec: Defines inputs common to all FreeSurfer classes
(sbjects_dir)

MatlabInputSpec: Defines inputs common to all Matlab classes (script, nodesktop, nosplash, logfile, single_comp_thread, mfile, script_file, and paths)

SlicerCommandLineInputSpec: Defines inputs common to all Slicer classes (module)

Most developers will only need to code at the the interface-level (i.e. implementing custom class inheriting from one of the above classes).

Output Specs

The OutputSpec defines the outputs that are generated, or possibly
generated depending on inputs, by the tool. OutputSpecs inherit from
interfaces.base.TraitedSpec directly.

Traited Attributes

Each specification attribute is an instance of a Trait class. These
classes encapsulate many standard Python types like Float and Int, but
with additional behavior like type checking. (See the documentation
on traits for more information on these trait types.) To handle
unique behaviors of our attributes we us traits metadata. These are
keyword arguments supplied in the initialization of the attributes.
The base classes BaseInterface and CommandLine
(defined in nipype.interfaces.base) check for the existence/or
value of these metadata and handle the inputs/outputs accordingly.
For example, all mandatory parameters will have the mandatory =
True metadata:

class BetInputSpec(FSLTraitedSpec):
 infile = File(exists=True,
 desc = 'input file to skull strip',
 argstr='%s', position=0, mandatory=True)

Common

		exists

		For files, use nipype.interfaces.base.File as the trait type. If
the file must exist for the tool to execute, specify exists = True
in the initialization of File (as shown in BetInputSpec above). This
will trigger the underlying traits code to confirm the file assigned
to that input actually exists. If it does not exist, the user will
be presented with an error message:

>>> bet.inputs.infile = 'does_not_exist.nii'
--
Traceback (most recent call last):
 File "<ipython console>", line 1, in <module>
 File "/Users/cburns/local/lib/python2.5/site-packages/nipype/interfaces/base.py", line 76, in validate
 self.error(object, name, value)
 File "/Users/cburns/local/lib/python2.5/site-packages/enthought/traits/trait_handlers.py", line 175, in error
 value)
TraitError: The 'infile' trait of a BetInputSpec instance must be a file
name, but a value of 'does_not_exist.nii' <type 'str'> was specified.

		hash_files

		To be used with inputs that are defining output filenames. When this flag
is set to false any Nipype will not try to hash any files described by this
input. This is useful to avoid rerunning when the specified output file
already exists and has changed.

		desc

		All trait objects have a set of default metadata attributes. desc
is one of those and is used as a simple, one-line docstring. The
desc is printed when users use the help() methods.

		Required: This metadata is required by all nipype interface

		classes.

		usedefault

		Set this metadata to True when the default value for the trait type
of this attribute is an acceptable value. All trait objects have a
default value, traits.Int has a default of 0, traits.Float
has a default of 0.0, etc... You can also define a default value
when you define the class. For example, in the code below all objects
of Foo will have a default value of 12 for x:

>>> import enthought.traits.api as traits
>>> class Foo(traits.HasTraits):
... x = traits.Int(12)
... y = traits.Int
...
>>> foo = Foo()
>>> foo.x
12
>>> foo.y
0

Nipype only passes inputs on to the underlying package if they
have been defined (more on this later). So if you specify
usedefault = True, you are telling the parser to pass the default
value on to the underlying package. Let’s look at the InputSpec for
SPM Realign:

class RealignInputSpec(BaseInterfaceInputSpec):
 jobtype = traits.Enum('estwrite', 'estimate', 'write',
 desc='one of: estimate, write, estwrite',
 usedefault=True)

Here we’ve defined jobtype to be an enumerated trait type,
Enum, which can be set to one of the following: estwrite,
estimate, or write. In a container, the default is always the
first element. So in this case, the default will be estwrite:

>>> from nipype.interfaces import spm
>>> rlgn = spm.Realign()
>>> rlgn.inputs.infile
<undefined>
>>> rlgn.inputs.jobtype
'estwrite'

		xor and requires

		Both of these accept a list of trait names. The xor metadata reflects
mutually exclusive traits, while the requires metadata reflects traits
that have to be set together. When a xor-ed trait is set, all other
traits belonging to the list are set to Undefined. The function
check_mandatory_inputs ensures that all requirements (both mandatory and
via the requires metadata are satisfied). These are also reflected in
the help function.

		copyfile

		This is metadata for a File or Directory trait that is relevant only in
the context of wrapping an interface in a Node and MapNode. copyfile
can be set to either True or False. False indicates that contents
should be symlinked, while True indicates that the contents should be
copied over.

		min_ver and max_ver

		These metadata determine if a particular trait will be available when a
given version of the underlying interface runs. Note that this check is
performed at runtime.:

class RealignInputSpec(BaseInterfaceInputSpec):
 jobtype = traits.Enum('estwrite', 'estimate', 'write', min_ver='5',
 usedefault=True)

		deprecated and new_name

		This is metadata for removing or renaming an input field from a spec.:

class RealignInputSpec(BaseInterfaceInputSpec):
 jobtype = traits.Enum('estwrite', 'estimate', 'write',
 deprecated='0.8',
 desc='one of: estimate, write, estwrite',
 usedefault=True)

In the above example this means that the jobtype input is deprecated and
will be removed in version 0.8. Deprecation should be set to two versions
from current release. Raises TraitError after package version crosses the
deprecation version.

For inputs that are being renamed, one can specify the new name of the
field.:

class RealignInputSpec(BaseInterfaceInputSpec):
 jobtype = traits.Enum('estwrite', 'estimate', 'write',
 deprecated='0.8', new_name='job_type',
 desc='one of: estimate, write, estwrite',
 usedefault=True)
 job_type = traits.Enum('estwrite', 'estimate', 'write',
 desc='one of: estimate, write, estwrite',
 usedefault=True)

In the above example, the jobtype field is being renamed to job_type.
When new_name is provided it must exist as a trait, otherwise an exception
will be raised.

Note

The version information for min_ver, max_ver and deprecated has to be
provided as a string. For example, min_ver=‘0.1’.

CommandLine

		argstr

		The metadata keyword for specifying the format strings
for the parameters. This was the value string in the opt_map
dictionaries of Nipype 0.2 code. If we look at the
FlirtInputSpec, the argstr for the reference file corresponds
to the argument string I would need to provide with the command-line
version of flirt:

class FlirtInputSpec(FSLTraitedSpec):
 reference = File(exists = True, argstr = '-ref %s', mandatory = True,
 position = 1, desc = 'reference file')

Required: This metadata is required by all command-line interface classes.

		position

		This metadata is used to specify the position of arguments. Both
positive and negative values are accepted. position = 0 will
position this argument as the first parameter after the command
name. position = -1 will position this argument as the last
parameter, after all other parameters.

		genfile

		If True, the genfile metadata specifies that a filename should be
generated for this parameter if-and-only-if the user did not provide
one. The nipype convention is to automatically generate output
filenames when not specified by the user both as a convenience for the
user and so the pipeline can easily gather the outputs. Requires
_gen_filename() method to be implemented. This way should be used if the
desired file name is dependent on some runtime variables (such as file name
of one of the inputs, or current working directory). In case when it should
be fixed it’s recommended to just use usedefault.

		sep

		For List traits the string with witch elements of the list will be joined.

		name_source

		Indicates the list of input fields from which the value of the current File
output variable will be drawn. This input field must be the name of a File.
Chaining is allowed, meaning that an input field can point to another as
name_source, which also points as name_source to a third field.
In this situation, the templates for substitutions are also accumulated.

		name_template

		By default a %s_generated template is used to create the output
filename. This metadata keyword allows overriding the generated name.

		keep_extension

		Use this and set it True if you want the extension from the input to be
kept.

SPM

		field

		name of the structure refered by the SPM job manager

		Required: This metadata is required by all SPM-mediated

		interface classes.

Defining an interface class

Common

When you define an interface class, you will define these attributes
and methods:

		input_spec: the InputSpec

		output_spec: the OutputSpec

		_list_outputs(): Returns a dictionary containing names of generated files that are expected after package completes execution. This is used by BaseInterface.aggregate_outputs to gather all output files for the pipeline.

CommandLine

For command-line interfaces:

		_cmd: the command-line command

If you used genfile:

		_gen_filename(name): Generate filename, used for filenames that nipype generates as a convenience for users. This is for parameters that are required by the wrapped package, but we’re generating from some other parameter. For example, BET.inputs.outfile is required by BET but we can generate the name from BET.inputs.infile. Override this method in subclass to handle.

And optionally:

		_redirect_x: If set to True it will make Nipype start Xvfb before running the interface and redirect X output to it. This is useful for

commandlines that spawn a graphical user interface.

		_format_arg(name, spec, value): For extra formatting of the input values before passing them to generic _parse_inputs() method.

For example this is the class definition for Flirt, minus the docstring:

class FLIRTInputSpec(FSLCommandInputSpec):
 in_file = File(exists=True, argstr='-in %s', mandatory=True,
 position=0, desc='input file')
 reference = File(exists=True, argstr='-ref %s', mandatory=True,
 position=1, desc='reference file')
 out_file = File(argstr='-out %s', desc='registered output file',
 name_source=['in_file'], name_template='%s_flirt',
 position=2, hash_files=False)
 out_matrix_file = File(argstr='-omat %s',
 name_source=['in_file'], keep_extension=True,
 name_template='%s_flirt.mat',
 desc='output affine matrix in 4x4 asciii format',
 position=3, hash_files=False)
 out_log = File(name_source=['in_file'], keep_extension=True,
 requires=['save_log'],
 name_template='%s_flirt.log', desc='output log')
 ...

class FLIRTOutputSpec(TraitedSpec):
 out_file = File(exists=True,
 desc='path/name of registered file (if generated)')
 out_matrix_file = File(exists=True,
 desc='path/name of calculated affine transform '
 '(if generated)')
 out_log = File(desc='path/name of output log (if generated)')

class Flirt(FSLCommand):
 _cmd = 'flirt'
 input_spec = FlirtInputSpec
 output_spec = FlirtOutputSpec

There are two possible output files outfile and outmatrix,
both of which can be generated if not specified by the user.

Also notice the use of self._gen_fname() - a FSLCommand helper method for generating filenames (with extensions conforming with FSLOUTPUTTYPE).

See also How to wrap a command line tool.

SPM

For SPM-mediated interfaces:

		_jobtype and _jobname: special names used used by the SPM job manager. You can find them by saving your batch job as an .m file and looking up the code.

And optionally:

		_format_arg(name, spec, value): For extra formatting of the input values before passing them to generic _parse_inputs() method.

Matlab

See How to wrap a MATLAB script.

Python

See How to wrap a Python script.

Undefined inputs

All the inputs and outputs that were not explicitly set (And do not have a usedefault flag - see above) will have Undefined value. To check if something is defined you have to explicitly call isdefiend function (comparing to None will not work).

Example of inputs

Below we have an example of using Bet. We can see from the help which
inputs are mandatory and which are optional, along with the one-line
description provided by the desc metadata:

>>> from nipype.interfaces import fsl
>>> fsl.BET.help()
Inputs

Mandatory:
 infile: input file to skull strip

Optional:
 args: Additional parameters to the command
 center: center of gravity in voxels
 environ: Environment variables (default={})
 frac: fractional intensity threshold
 functional: apply to 4D fMRI data
 mask: create binary mask image
 mesh: generate a vtk mesh brain surface
 nooutput: Don't generate segmented output
 outfile: name of output skull stripped image
 outline: create surface outline image
 outputtype: None
 radius: head radius
 reduce_bias: bias field and neck cleanup
 skull: create skull image
 threshold: apply thresholding to segmented brain image and mask
 vertical_gradient: vertical gradient in fractional intensity threshold (-1, 1)

Outputs

maskfile: path/name of binary brain mask (if generated)
meshfile: path/name of vtk mesh file (if generated)
outfile: path/name of skullstripped file
outlinefile: path/name of outline file (if generated)

Here we create a bet object and specify the required input. We then
check our inputs to see which are defined and which are not:

>>> bet = fsl.BET(infile = 'f3.nii')
>>> bet.inputs
args = <undefined>
center = <undefined>
environ = {'FSLOUTPUTTYPE': 'NIFTI_GZ'}
frac = <undefined>
functional = <undefined>
infile = f3.nii
mask = <undefined>
mesh = <undefined>
nooutput = <undefined>
outfile = <undefined>
outline = <undefined>
outputtype = NIFTI_GZ
radius = <undefined>
reduce_bias = <undefined>
skull = <undefined>
threshold = <undefined>
vertical_gradient = <undefined>
>>> bet.cmdline
'bet f3.nii /Users/cburns/data/nipype/s1/f3_brain.nii.gz'

We also checked the command-line that will be generated when we run
the command and can see the generated output filename
f3_brain.nii.gz.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

_images/graphviz-9030931fdf042b7ed479914f31b61b55dd6c9c44.png

_images/graphviz-f760e8301415974f915af0a8dc964c37754ffbc9.png
g
00@00

devel/gitwash/development_workflow.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Development workflow

You already have your own forked copy of the nipype [http://nipy.org/nipype] repository, by
following Making your own copy (fork) of nipype, Set up your fork, and you have configured
git [http://git-scm.com/] by following Configure git.

Workflow summary

		Keep your master branch clean of edits that have not been merged
to the main nipype [http://nipy.org/nipype] development repo. Your master then will follow
the main nipype [http://nipy.org/nipype] repository.

		Start a new feature branch for each set of edits that you do.

		If you can avoid it, try not to merge other branches into your feature
branch while you are working.

		Ask for review!

This way of working really helps to keep work well organized, and in
keeping history as clear as possible.

See — for example — linux git workflow [http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html].

Making a new feature branch

git branch my-new-feature
git checkout my-new-feature

Generally, you will want to keep this also on your public github [http://github.com] fork
of nipype [http://nipy.org/nipype]. To do this, you git push [http://www.kernel.org/pub/software/scm/git/docs/git-push.html] this new branch up to your github [http://github.com]
repo. Generally (if you followed the instructions in these pages, and
by default), git will have a link to your github [http://github.com] repo, called
origin. You push up to your own repo on github [http://github.com] with:

git push origin my-new-feature

In git >1.7 you can ensure that the link is correctly set by using the
--set-upstream option:

git push --set-upstream origin my-new-feature

From now on git [http://git-scm.com/] will know that my-new-feature is related to the
my-new-feature branch in the github [http://github.com] repo.

The editing workflow

Overview

hack hack
git add my_new_file
git commit -am 'NF - some message'
git push

In more detail

		Make some changes

		See which files have changed with git status (see git status [http://www.kernel.org/pub/software/scm/git/docs/git-status.html]).
You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

		Check what the actual changes are with git diff (git diff [http://www.kernel.org/pub/software/scm/git/docs/git-diff.html]).

		Add any new files to version control git add new_file_name (see
git add [http://www.kernel.org/pub/software/scm/git/docs/git-add.html]).

		To commit all modified files into the local copy of your repo,, do
git commit -am 'A commit message'. Note the -am options to
commit. The m flag just signals that you’re going to type a
message on the command line. The a flag — you can just take on
faith — or see why the -a flag? [http://www.gitready.com/beginner/2009/01/18/the-staging-area.html] — and the helpful use-case
description in the tangled working copy problem [http://tomayko.com/writings/the-thing-about-git]. The git commit [http://www.kernel.org/pub/software/scm/git/docs/git-commit.html] manual
page might also be useful.

		To push the changes up to your forked repo on github [http://github.com], do a git
push (see git push).

Asking for code review

		Go to your repo URL — e.g. http://github.com/your-user-name/nipype.

		Click on the Branch list button:

[image: ../../_images/branch_list.png]

		Click on the Compare button for your feature branch — here my-new-feature:

[image: ../../_images/branch_list_compare.png]

		If asked, select the base and comparison branch names you want to
compare. Usually these will be master and my-new-feature
(where that is your feature branch name).

		At this point you should get a nice summary of the changes. Copy the
URL for this, and post it to the nipype mailing list [http://mail.scipy.org/mailman/listinfo/nipy-devel], asking for
review. The URL will look something like:
http://github.com/your-user-name/nipype/compare/master...my-new-feature.
There’s an example at
http://github.com/matthew-brett/nipy/compare/master...find-install-data
See: http://github.com/blog/612-introducing-github-compare-view for
more detail.

The generated comparison, is between your feature branch
my-new-feature, and the place in master from which you branched
my-new-feature. In other words, you can keep updating master
without interfering with the output from the comparison. More detail?
Note the three dots in the URL above (master...my-new-feature).

Two vs three dots

Imagine a series of commits A, B, C, D... Imagine that there are two
branches, topic and master. You branched topic off master when
master was at commit ‘E’. The graph of the commits looks like this:

 A---B---C topic
 /
D---E---F---G master

Then:

git diff master..topic

will output the difference from G to C (i.e. with effects of F and G),
while:

git diff master...topic

would output just differences in the topic branch (i.e. only A, B, and
C). [1]

Asking for your changes to be merged with the main repo

When you are ready to ask for the merge of your code:

		Go to the URL of your forked repo, say
http://github.com/your-user-name/nipype.git.

		Click on the ‘Pull request’ button:

[image: ../../_images/pull_button.png]
Enter a message; we suggest you select only nipype as the
recipient. The message will go to the nipype mailing list [http://mail.scipy.org/mailman/listinfo/nipy-devel]. Please
feel free to add others from the list as you like.

Merging from trunk

This updates your code from the upstream nipype github [http://github.com/nipy/nipype] repo.

Overview

go to your master branch
git checkout master
pull changes from github
git fetch upstream
merge from upstream
git merge upstream/master

In detail

We suggest that you do this only for your master branch, and leave
your ‘feature’ branches unmerged, to keep their history as clean as
possible. This makes code review easier:

git checkout master

Make sure you have done Linking your repository to the upstream repo.

Merge the upstream code into your current development by first pulling
the upstream repo to a copy on your local machine:

git fetch upstream

then merging into your current branch:

git merge upstream/master

Deleting a branch on github [http://github.com]

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

(Note the colon : before test-branch. See also:
http://github.com/guides/remove-a-remote-branch

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all
committing into the same repository, or even the same branch, then just
share it via github [http://github.com].

First fork nipype into your account, as from Making your own copy (fork) of nipype.

Then, go to your forked repository github page, say
http://github.com/your-user-name/nipype

Click on the ‘Admin’ button, and add anyone else to the repo as a
collaborator:

[image: ../../_images/pull_button.png]

Now all those people can do:

git clone git@githhub.com:your-user-name/nipype.git

Remember that links starting with git@ use the ssh protocol and are
read-write; links starting with git:// are read-only.

Your collaborators can then commit directly into that repo with the
usual:

git commit -am 'ENH - much better code'
git push origin master # pushes directly into your repo

Exploring your repository

To see a graphical representation of the repository branches and
commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer [http://github.com/blog/39-say-hello-to-the-network-graph-visualizer] for your github [http://github.com]
repo.

Footnotes

		[1]		Thanks to Yarik Halchenko for this explanation.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/tutorial_102.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Pipeline 102

Now that you know how to construct a workflow and execute it, we will go
into more advanced concepts. This tutorial focuses on
nipype.pipeline.engine.Workflow
nipype.pipeline.engine.Node and
nipype.pipeline.engine.MapNode.

A workflow is a directed acyclic graph (DAG) consisting of nodes
which can be of type Workflow, Node or MapNode. Workflows can
be re-used and hierarchical workflows can be easily constructed.

‘name’ : the mandatory keyword arg

When instantiating a Workflow, Node or MapNode, a name has to be
provided. For any given level of a workflow, no two nodes can have the
same name. The engine will let you know if this is the case when you add
nodes to a workflow either directly using add_nodes or using the
connect function.

Names have many internal uses. They determine the name of the directory
in which the workflow/node is run and the outputs are stored.

realigner = pe.Node(interface=spm.Realign(),
 name='RealignSPM')

Now this output will be stored in a directory called
RealignSPM. Proper naming of your nodes can be advantageous
from the perspective that it provides a semantic descriptor aligned with
your thought process. This name parameter is also used to refer to nodes in
embedded workflows.

iterables

This can only be set for Node and MapNode. This is syntactic sugar for
running a subgraph with the Node/MapNode at its root in a for
loop. For example, consider an fMRI preprocessing pipeline that you
would like to run for all your subjects. You can define a workflow and
then execute it for every single subject inside a for loop. Consider
the simplistic example below, where startnode is a node belonging to
workflow ‘mywork.’

for s in subjects:
 startnode.inputs.subject_id = s
 mywork.run()

The pipeline engine provides a convenience function that simplifies
this:

startnode.iterables = ('subject_id', subjects)
mywork.run()

This will achieve the same exact behavior as the for loop above. The
workflow graph is:

[image: ../_images/proc2subj.png]
Now consider the situation in which you want the last node (typically
smoothing) of your preprocessing pipeline to smooth using two
different kernels (0 mm and 6 mm FWHM). Again the common approach
would be:

for s in subjects:
 startnode.inputs.subject_id = s
 uptosmoothingworkflow.run()
 smoothnode.inputs.infile = lastnode.output.outfile
 for fwhm in [0, 6]:
 smoothnode.inputs.fwhm = fwhm
 remainingworkflow.run()

Instead of having multiple for loops at various stages, you can set up
another set of iterables for the smoothnode.

startnode.iterables = ('subject_id', subjects)
smoothnode.iterables = ('fwhm', [0, 6])
mywork.run()

This will run the preprocessing workflow for two different smoothing
kernels over all subjects.

[image: ../_images/proc2subj2fwhm.png]
Thus setting iterables has a multiplicative effect. In the above
examples there is a separate, distinct specifymodel node that’s
executed for each combination of subject and smoothing.

iterfield

This is a mandatory keyword arg for MapNode. This enables running the
underlying interface over a set of inputs and is particularly useful
when the interface can only operate on a single input. For example, the
nipype.interfaces.fsl.BET will operate on only one (3d or 4d)
NIfTI file. But wrapping BET in a MapNode can execute it over a list of files:

better = pe.MapNode(interface=fsl.Bet(), name='stripper',
 iterfield=['in_file'])
better.inputs.in_file = ['file1.nii','file2.nii']
better.run()

This will create a directory called stripper and inside it two
subdirectories called in_file_0 and in_file_1. The output of running bet
separately on each of those files will be stored in those two
subdirectories.

This can be extended to run it on pairwise inputs. For example,

transform = pe.MapNode(interface=fs.ApplyVolTransform(),
 name='warpvol',
 iterfield=['source_file', 'reg_file'])
transform.inputs.source_file = ['file1.nii','file2.nii']
transform.inputs.reg_file = ['file1.reg','file2.reg']
transform.run()

The above will be equivalent to running transform by taking corresponding items from
each of the two fields in iterfield. The subdirectories get always
named with respect to the first iterfield.

overwrite

The overwrite keyword arg forces a node to be rerun.

The clone function

The clone function can be used to create a copy of a workflow. No
references to the original workflow are retained. As such the clone
function requires a name keyword arg that specifies a new name for the
duplicate workflow.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/gitwash/patching.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Making a patch

You’ve discovered a bug or something else you want to change
in nipype [http://nipy.org/nipype] .. — excellent!

You’ve worked out a way to fix it — even better!

You want to tell us about it — best of all!

The easiest way is to make a patch or set of patches. Here
we explain how. Making a patch is the simplest and quickest,
but if you’re going to be doing anything more than simple
quick things, please consider following the
Git for development model instead.

Making patches

Overview

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don't have it
git clone git://github.com/nipy/nipype.git
make a branch for your patching
cd nipype
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'
make the patch files
git format-patch -M -C master

Then, send the generated patch files to the nipype
mailing list [http://mail.scipy.org/mailman/listinfo/nipy-devel] — where we will thank you warmly.

In detail

		Tell git [http://git-scm.com/] who you are so it can label the commits you’ve
made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

		If you don’t already have one, clone a copy of the
nipype [http://nipy.org/nipype] repository:

git clone git://github.com/nipy/nipype.git
cd nipype

		Make a ‘feature branch’. This will be where you work on
your bug fix. It’s nice and safe and leaves you with
access to an unmodified copy of the code in the main
branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

		Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'

Note the -am options to commit. The m flag just
signals that you’re going to type a message on the command
line. The a flag — you can just take on faith —
or see why the -a flag? [http://www.gitready.com/beginner/2009/01/18/the-staging-area.html].

		When you have finished, check you have committed all your
changes:

git status

		Finally, make your commits into patches. You want all the
commits since you branched from the master branch:

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Send these files to the nipype mailing list [http://mail.scipy.org/mailman/listinfo/nipy-devel].

When you are done, to switch back to the main copy of the
code, just return to the master branch:

git checkout master

Moving from patching to development

If you find you have done some patches, and you have one or
more feature branches, you will probably want to switch to
development mode. You can do this with the repository you
have.

Fork the nipype [http://nipy.org/nipype] repository on github [http://github.com] — Making your own copy (fork) of nipype.
Then:

checkout and refresh master branch from main repo
git checkout master
git pull origin master
rename pointer to main repository to 'upstream'
git remote rename origin upstream
point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/nipype.git
push up any branches you've made and want to keep
git push origin the-fix-im-thinking-of

Then you can, if you want, follow the
Development workflow.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/plugins.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Using Nipype Plugins

The workflow engine supports a plugin architecture for workflow execution. The
available plugins allow local and distributed execution of workflows and
debugging. Each available plugin is described below.

Current plugins are available for Linear, Multiprocessing, IPython [http://ipython.scipy.org] distributed
processing platforms and for direct processing on SGE [http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html], PBS [http://www.clusterresources.com/products/torque-resource-manager.php], HTCondor [http://www.cs.wisc.edu/htcondor/], LSF [http://www.platform.com/Products/platform-lsf], and SLURM [http://slurm.schedmd.com/]. We
anticipate future plugins for the Soma [http://brainvisa.info/soma/soma-workflow/] workflow.

Note

The current distributed processing plugins rely on the availability of a
shared filesystem across computational nodes.

A variety of config options can control how execution behaves in this
distributed context. These are listed later on in this page.

All plugins can be executed with:

workflow.run(plugin=PLUGIN_NAME, plugin_args=ARGS_DICT)

Optional arguments:

status_callback : a function handle
max_jobs : maximum number of concurrent jobs
max_tries : number of times to try submitting a job
retry_timeout : amount of time to wait between tries

Note

Except for the status_callback, the remaining arguments only apply to the
distributed plugins: MultiProc/IPython(X)/SGE/PBS/HTCondor/HTCondorDAGMan/LSF

For example:

Plugins

Debug

This plugin provides a simple mechanism to debug certain components of a
workflow without executing any node.

Mandatory arguments:

callable : A function handle that receives as arguments a node and a graph

The function callable will called for every node from a topological sort of the
execution graph.

Linear

This plugin runs the workflow one node at a time in a single process locally.
The order of the nodes is determined by a topological sort of the workflow:

workflow.run(plugin='Linear')

MultiProc

Uses the Python [http://www.python.org] multiprocessing library to distribute jobs as new processes on
a local system.

Optional arguments:

n_procs : Number of processes to launch in parallel, if not set number of
processors/threads will be automatically detected

To distribute processing on a multicore machine, simply call:

workflow.run(plugin='MultiProc')

This will use all available CPUs. If on the other hand you would like to restrict
the number of used resources (to say 2 CPUs), you can call:

workflow.run(plugin='MultiProc', plugin_args={'n_procs' : 2}

IPython

This plugin provide access to distributed computing using IPython [http://ipython.scipy.org] parallel
machinery.

Note

We provide backward compatibility with IPython [http://ipython.scipy.org] versions earlier than
0.10.1 using the IPythonX plugin.

Please read the IPython [http://ipython.scipy.org] documentation to determine how to setup your cluster
for distributed processing. This typically involves calling ipcluster.

Once the clients have been started, any pipeline executed with:

workflow.run(plugin='IPython')

SGE/PBS

In order to use nipype with SGE [http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html] or PBS [http://www.clusterresources.com/products/torque-resource-manager.php] you simply need to call:

workflow.run(plugin='SGE')
workflow.run(plugin='PBS')

Optional arguments:

template: custom template file to use
qsub_args: any other command line args to be passed to qsub.
max_jobname_len: (PBS only) maximum length of the job name. Default 15.

For example, the following snippet executes the workflow on myqueue with
a custom template:

workflow.run(plugin='SGE',
 plugin_args=dict(template='mytemplate.sh', qsub_args='-q myqueue')

In addition to overall workflow configuration, you can use node level
configuration for PBS/SGE:

node.plugin_args = {'qsub_args': '-l nodes=1:ppn=3'}

this would apply only to the node and is useful in situations, where a
particular node might use more resources than other nodes in a workflow.

Note

Setting the keyword overwrite would overwrite any global configuration with
this local configuration:

node.plugin_args = {'qsub_args': '-l nodes=1:ppn=3', 'overwrite': True}

SGEGraph

SGEGraph is an execution plugin working with Sun Grid Engine that allows for
submitting entire graph of dependent jobs at once. This way Nipype does not
need to run a monitoring process - SGE takes care of this. The use of SGEGraph
is preferred over SGE [http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html] since the latter adds unnecessary load on the submit
machine.

Note

When rerunning unfinished workflows using SGEGraph you may decide not to
submit jobs for Nodes that previously finished running. This can speed up
execution, but new or modified inputs that would previously trigger a Node
to rerun will be ignored. The following option turns on this functionality:

workflow.run(plugin='SGEGraph', plugin_args = {'dont_resubmit_completed_jobs': True})

LSF

Submitting via LSF is almost identical to SGE above above except for the optional arguments field:

workflow.run(plugin='LSF')

Optional arguments:

template: custom template file to use
bsub_args: any other command line args to be passed to bsub.

SLURM

Submitting via SLURM is almost identical to SGE above except for the optional arguments field:

workflow.run(plugin=’SLURM’)

Optional arguments:

template: custom template file to use
sbatch_args: any other command line args to be passed to bsub.

SLURMGraph

SLURMGraph is an execution plugin working with SLURM that allows for
submitting entire graph of dependent jobs at once. This way Nipype does not
need to run a monitoring process - SLURM takes care of this. The use of SLURMGraph
plugin is preferred over the vanilla SLURM [http://slurm.schedmd.com/] plugin since the latter adds
unnecessary load on the submit machine.

Note

When rerunning unfinished workflows using SLURMGraph you may decide not to
submit jobs for Nodes that previously finished running. This can speed up
execution, but new or modified inputs that would previously trigger a Node
to rerun will be ignored. The following option turns on this functionality:

workflow.run(plugin='SLURMGraph', plugin_args = {'dont_resubmit_completed_jobs': True})

HTCondor

DAGMan

With its DAGMan [http://research.cs.wisc.edu/htcondor/dagman/dagman.html] component HTCondor [http://www.cs.wisc.edu/htcondor/] (previously Condor) allows for submitting
entire graphs of dependent jobs at once (similar to SGEGraph and SLURMGraph).
With the CondorDAGMan plug-in Nipype can utilize this functionality to
submit complete workflows directly and in a single step. Consequently, and
in contrast to other plug-ins, workflow execution returns almost
instantaneously – Nipype is only used to generate the workflow graph,
while job scheduling and dependency resolution are entirely managed by HTCondor [http://www.cs.wisc.edu/htcondor/].

Please note that although DAGMan [http://research.cs.wisc.edu/htcondor/dagman/dagman.html] supports specification of data dependencies
as well as data provisioning on compute nodes this functionality is currently
not supported by this plug-in. As with all other batch systems supported by
Nipype, only HTCondor pools with a shared file system can be used to process
Nipype workflows.

Workflow execution with HTCondor DAGMan is done by calling:

workflow.run(plugin='CondorDAGMan')

Job execution behavior can be tweaked with the following optional plug-in
arguments. The value of most arguments can be a literal string or a filename,
where in the latter case the content of the file will be used as the argument
value:

submit_template : submit spec template for individual jobs in a DAG (see
 CondorDAGManPlugin.default_submit_template for the default.
initial_specs : additional submit specs that are prepended to any job's
 submit file
override_specs : additional submit specs that are appended to any job's
 submit file
wrapper_cmd : path to an exectuable that will be started instead of a node
 script. This is useful for wrapper script that execute certain
 functionality prior or after a node runs. If this option is
 given the wrapper command is called with the respective Python
 exectuable and the path to the node script as final arguments
wrapper_args : optional additional arguments to a wrapper command
dagman_args : arguments to be prepended to the job execution script in the
 dagman call
block : if True the plugin call will block until Condor has finished
 prcoessing the entire workflow (default: False)

Please see the HTCondor documentation [http://research.cs.wisc.edu/htcondor/manual] for details on possible configuration
options and command line arguments.

Using the wrapper_cmd argument it is possible to combine Nipype workflow
execution with checkpoint/migration functionality offered by, for example,
DMTCP [http://dmtcp.sourceforge.net]. This is especially useful in the case of workflows with long running
nodes, such as Freesurfer’s recon-all pipeline, where Condor’s job
prioritization algorithm could lead to jobs being evicted from compute
nodes in order to maximize overall troughput. With checkpoint/migration enabled
such a job would be checkpointed prior eviction and resume work from the
checkpointed state after being rescheduled – instead of restarting from
scratch.

On a Debian system, executing a workflow with support for checkpoint/migration
for all nodes could look like this:

define common parameters
dmtcp_hdr = """
should_transfer_files = YES
when_to_transfer_output = ON_EXIT_OR_EVICT
kill_sig = 2
environment = DMTCP_TMPDIR=./;JALIB_STDERR_PATH=/dev/null;DMTCP_PREFIX_ID=$(CLUSTER)_$(PROCESS)
"""
shim_args = "--log %(basename)s.shimlog --stdout %(basename)s.shimout --stderr %(basename)s.shimerr"
run workflow
workflow.run(
 plugin='CondorDAGMan',
 plugin_args=dict(initial_specs=dmtcp_hdr,
 wrapper_cmd='/usr/lib/condor/shim_dmtcp',
 wrapper_args=shim_args)
)

qsub emulation

Note

This plug-in is deprecated and users should migrate to the more robust and
more versatile CondorDAGMan plug-in.

Despite the differences between HTCondor and SGE-like batch systems the plugin
usage (incl. supported arguments) is almost identical. The HTCondor plugin relies
on a qsub emulation script for HTCondor, called condor_qsub that can be
obtained from a Git repository on git.debian.org [http://anonscm.debian.org/gitweb/?p=pkg-exppsy/condor.git;a=blob_plain;f=debian/condor_qsub;hb=HEAD]. This script is currently
not shipped with a standard HTCondor distribution, but is included in the HTCondor
package from http://neuro.debian.net. It is sufficient to download this script
and install it in any location on a system that is included in the PATH
configuration.

Running a workflow in a HTCondor pool is done by calling:

workflow.run(plugin='Condor')

The plugin supports a limited set of qsub arguments (qsub_args) that cover
the most common use cases. The condor_qsub emulation script translates qsub
arguments into the corresponding HTCondor terminology and handles the actual job
submission. For details on supported options see the manpage of condor_qsub.

Optional arguments:

qsub_args: any other command line args to be passed to condor_qsub.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/spmmcr.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Using SPM with MATLAB Common Runtime

In order to use the standalone MCR version of spm, you need to ensure that
the following commands are executed at the beginning of your script:

from nipype.interfaces import spm
matlab_cmd = '/path/to/run_spm8.sh /path/to/Compiler_Runtime/v713/ script'
spm.SPMCommand.set_mlab_paths(matlab_cmd=matlab_cmd, use_mcr=True)

you can test by calling:

spm.SPMCommand().version

If you want to enforce the standalone MCR version of spm for nipype globally,
you can do so by setting the following environment variables:

		SPMMCRCMD

		Specifies the command to use to run the spm standalone MCR version. You
may still override the command as described above.

		FORCE_SPMMCR

		Set this to any value in order to enforce the use of spm standalone MCR
version in nipype globally. Technically, this sets the use_mcr flag of
the spm interface to True.

Information about the MCR version of SPM8 can be found at:

http://en.wikibooks.org/wiki/SPM/Standalone

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/gitwash/forking_hell.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Making your own copy (fork) of nipype

You need to do this only once. The instructions here are very similar
to the instructions at http://help.github.com/forking/ — please see
that page for more detail. We’re repeating some of it here just to give the
specifics for the nipype [http://nipy.org/nipype] project, and to suggest some default names.

Set up and configure a github [http://github.com] account

If you don’t have a github [http://github.com] account, go to the github [http://github.com] page, and make one.

You then need to configure your account to allow write access — see
the Generating SSH keys help on github help [http://help.github.com].

Create your own forked copy of nipype [http://nipy.org/nipype]

		Log into your github [http://github.com] account.

		Go to the nipype [http://nipy.org/nipype] github home at nipype github [http://github.com/nipy/nipype].

		Click on the fork button:

[image: ../../_images/forking_button.png]
Now, after a short pause and some ‘Hardcore forking action’, you
should find yourself at the home page for your own forked copy of nipype [http://nipy.org/nipype].

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/vagrant.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Running Nipype in a VM

Tip

Creating the Vagrant VM as described below requires an active internet
connection.

Container technologies (Vagrant [http://www.vagrantup.com/], Docker [http://www.docker.io/]) allow creating and manipulating
lightweight virtual environments. The Nipype [http://nipy.org/nipype/] source now contains a Vagrantfile
to launch a Vagrant [http://www.vagrantup.com/] VM.

Requirements:

		Vagrant [http://www.vagrantup.com/]

		Virtualbox [https://www.virtualbox.org/]

After you have installed Vagrant and Virtualbox, you simply need to download the
latest Nipype source and unzip/tar/compress it. Go into your terminal and switch
to the nipype source directory. Make sure the Vagrantfile is in the directory.
Now you can execute:

vagrant up

This will launch and provision the virtual machine.

The default virtual machine is built using Ubuntu Precise 64, linked to the
NeuroDebian [http://neuro.debian.net/] source repo and contains a 2 node Grid Engine for cluster
execution.

The machine has a default IP address of 192.168.100.20 . From the vagrant
startup directory you can log into the machine using:

vagrant ssh

Now you can install your favorite software using:

sudo apt-get install fsl afni

Also note that the directory in which you call vagrant up will be mounted
under /vagrant inside the virtual machine. You can also copy the Vagrantfile
or modify it in order to mount a different directory/directories.

Please read through Vagrant [http://www.vagrantup.com/] documentation on other features. The python
environment is built using a miniconda [http://repo.continuum.io/miniconda/]
distribution. Hence conda can be used to do your python package management
inside the VM.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/gitwash/index.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Working with nipype source code

Contents:

		Introduction

		Install git
		Overview

		In detail

		Following the latest source
		Get the local copy of the code

		Updating the code

		Making a patch
		Making patches

		Moving from patching to development

		Git for development
		Making your own copy (fork) of nipype

		Set up your fork

		Configure git

		Development workflow

		git resources
		Tutorials and summaries

		Advanced git workflow

		Manual pages online

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/install.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Download and install

This page covers the necessary steps to install Nipype.

Download

Release 0.10.0: [zip [https://github.com/nipy/nipype/archive/0.10.0.zip] tar.gz [https://github.com/nipy/nipype/archive/0.10.0.tar.gz]]

Development: [zip [http://github.com/nipy/nipype/zipball/master] tar.gz [http://github.com/nipy/nipype/tarball/master]]

Prior downloads [http://github.com/nipy/nipype/tags]

To check out the latest development version:

git clone git://github.com/nipy/nipype.git

Install

The installation process is similar to other Python packages.

If you already have a Python environment setup that has the dependencies listed
below, you can do:

easy_install nipype

or:

pip install nipype

Debian and Ubuntu

Add the NeuroDebian [http://neuro.debian.org] repository and install
the python-nipype package using apt-get or your favorite package
manager.

Mac OS X

The easiest way to get nipype running on Mac OS X is to install Anaconda [https://store.continuum.io/cshop/anaconda/] or
Canopy [https://www.enthought.com/products/canopy/] and then add nibabel and nipype by executing:

easy_install nibabel
easy_install nipype

From source

If you downloaded the source distribution named something
like nipype-x.y.tar.gz, then unpack the tarball, change into the
nipype-x.y directory and install nipype using:

python setup.py install

Note: Depending on permissions you may need to use sudo.

Testing the install

The best way to test the install is to run the test suite. If you have
nose [http://somethingaboutorange.com/mrl/projects/nose] installed, then do the following:

python -c "import nipype; nipype.test()"

you can also test with nosetests:

nosetests --with-doctest /software/nipy-repo/masternipype/nipype
--exclude=external --exclude=testing

All tests should pass (unless you’re missing a dependency). If SUBJECTS_DIR
variable is not set some FreeSurfer related tests will fail. If any tests
fail, please report them on our bug tracker [http://github.com/nipy/nipype/issues].

On Debian systems, set the following environment variable before running
tests:

export MATLABCMD=$pathtomatlabdir/bin/$platform/MATLAB

where, $pathtomatlabdir is the path to your matlab installation and
$platform is the directory referring to x86 or x64 installations
(typically glnxa64 on 64-bit installations).

Avoiding any MATLAB calls from testing

On unix systems, set an empty environment variable:

export NIPYPE_NO_MATLAB=

This will skip any tests that require matlab.

Dependencies

Below is a list of required dependencies, along with additional software
recommendations.

Must Have

Python [http://www.python.org] 2.7

		Nibabel [http://nipy.org/nibabel/] 1.0 - 1.4

		Neuroimaging file i/o library

		NetworkX [http://networkx.lanl.gov/] 1.0 - 1.8

		Python package for working with complex networks.

NumPy [http://www.scipy.org/NumPy] 1.3 - 1.7

		SciPy [http://www.scipy.org] 0.7 - 0.12

		Numpy and Scipy are high-level, optimized scientific computing libraries.

Enthought [http://www.enthought.com] Traits [http://code.enthought.com/projects/traits/] 4.0.0 - 4.3.0

Dateutil 1.5 -

Note

Full distributions such as Anaconda [https://store.continuum.io/cshop/anaconda/] or Canopy [https://www.enthought.com/products/canopy/] provide the above packages,
except Nibabel [http://nipy.org/nibabel/].

Strong Recommendations

		IPython [http://ipython.scipy.org] 0.10.2 - 1.0.0

		Interactive python environment. This is necessary for some parallel
components of the pipeline engine.

		Matplotlib [http://matplotlib.sourceforge.net] 1.0 - 1.2

		Plotting library

RDFLib [http://rdflib.readthedocs.org/en/latest/] 4.1
RDFLibrary required for provenance export as RDF

		Sphinx [http://sphinx.pocoo.org/] 1.1

		Required for building the documentation

		Graphviz [http://www.graphviz.org/]

		Required for building the documentation

Interface Dependencies

These are the software packages that nipype.interfaces wraps:

		FSL [http://www.fmrib.ox.ac.uk/fsl]

		4.1.0 or later

		matlab [http://www.mathworks.com]

		2008a or later

		SPM [http://www.fil.ion.ucl.ac.uk/spm]

		SPM5/8

		FreeSurfer [http://surfer.nmr.mgh.harvard.edu]

		FreeSurfer version 4 and higher

		AFNI [http://afni.nimh.nih.gov/afni]

		2009_12_31_1431 or later

		Slicer [http://slicer.org]

		3.6 or later

		Nipy [http://nipy.org]

		0.1.2+20110404 or later

		Nitime [http://nipy.org/nitime/]

		(optional)

Camino [http://web4.cs.ucl.ac.uk/research/medic/camino/pmwiki/pmwiki.php]

Camino2Trackvis [http://camino-trackvis.sourceforge.net/]

ConnectomeViewer [http://www.connectomeviewer.org/viewer/]

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/gitwash/git_development.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Git for development

Contents:

		Making your own copy (fork) of nipype
		Set up and configure a github account

		Create your own forked copy of nipype

		Set up your fork
		Overview

		In detail

		Configure git
		Overview

		In detail

		Development workflow
		Workflow summary

		Making a new feature branch

		The editing workflow

		Asking for code review

		Asking for your changes to be merged with the main repo

		Merging from trunk

		Deleting a branch on github

		Several people sharing a single repository

		Exploring your repository

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/gitwash/git_resources.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

git [http://git-scm.com/] resources

Tutorials and summaries

		github help [http://help.github.com] has an excellent series of how-to guides.

		learn.github [http://learn.github.com/] has an excellent series of tutorials

		The pro git book [http://progit.org/] is a good in-depth book on git.

		A git cheat sheet [http://github.com/guides/git-cheat-sheet] is a page giving summaries of common commands.

		The git user manual [http://www.kernel.org/pub/software/scm/git/docs/user-manual.html]

		The git tutorial [http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html]

		The git community book [http://book.git-scm.com/]

		git ready [http://www.gitready.com/] — a nice series of tutorials

		git casts [http://www.gitcasts.com/] — video snippets giving git how-tos.

		git magic [http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html] — extended introduction with intermediate detail

		The git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html] is an easy read explaining the concepts behind git.

		Our own git foundation [http://matthew-brett.github.com/pydagogue/foundation.html] expands on the git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html].

		Fernando Perez’ git page — Fernando’s git page [http://www.fperez.org/py4science/git.html] — many
links and tips

		A good but technical page on git concepts [http://www.eecs.harvard.edu/~cduan/technical/git/]

		git svn crash course [http://git-scm.com/course/svn.html]: git [http://git-scm.com/] for those of us used to subversion [http://subversion.tigris.org/]

Advanced git workflow

There are many ways of working with git [http://git-scm.com/]; here are some posts on the
rules of thumb that other projects have come up with:

		Linus Torvalds on git management [http://kerneltrap.org/Linux/Git_Management]

		Linus Torvalds on linux git workflow [http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html] . Summary; use the git tools
to make the history of your edits as clean as possible; merge from
upstream edits as little as possible in branches where you are doing
active development.

Manual pages online

You can get these on your own machine with (e.g) git help push or
(same thing) git push --help, but, for convenience, here are the
online manual pages for some common commands:

		git add [http://www.kernel.org/pub/software/scm/git/docs/git-add.html]

		git branch [http://www.kernel.org/pub/software/scm/git/docs/git-branch.html]

		git checkout [http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html]

		git clone [http://www.kernel.org/pub/software/scm/git/docs/git-clone.html]

		git commit [http://www.kernel.org/pub/software/scm/git/docs/git-commit.html]

		git config [http://www.kernel.org/pub/software/scm/git/docs/git-config.html]

		git diff [http://www.kernel.org/pub/software/scm/git/docs/git-diff.html]

		git log [http://www.kernel.org/pub/software/scm/git/docs/git-log.html]

		git pull [http://www.kernel.org/pub/software/scm/git/docs/git-pull.html]

		git push [http://www.kernel.org/pub/software/scm/git/docs/git-push.html]

		git remote [http://www.kernel.org/pub/software/scm/git/docs/git-remote.html]

		git status [http://www.kernel.org/pub/software/scm/git/docs/git-status.html]

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/index.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

User Guide

		Release:		0.11.0

		Date:		September 15, 2015, 17:26 PDT

		Download and install
		Download

		Install

		Testing the install

		Dependencies

		Running Nipype in a VM

		Tutorial : Interfaces
		Specifying options

		Getting Help

		FSL interface example

		SPM interface example

		Interface caching
		Interface caching: why and how

		A big picture view: using the Memory object

		Usage patterns: working efficiently with caching

		API reference

		Tutorial : Workflows

		Using Nipype Plugins

		Configuration File

		Debugging Nipype Workflows

		DataGrabber and DataSink explained

		The SelectFiles Interfaces

		The Function Interface

		MapNode, iterfield, and iterables explained

		JoinNode, synchronize and itersource

		Model Specification for First Level fMRI Analysis

		Saving Workflows and Nodes to a file (experimental)

		Using SPM with MATLAB Common Runtime

		Using MIPAV, JIST, and CBS Tools

		Running Nipype Interfaces from the command line (nipype_cmd)

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/gitwash/git_intro.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Introduction

These pages describe a git [http://git-scm.com/] and github [http://github.com] workflow for the nipype [http://nipy.org/nipype]
project.

There are several different workflows here, for different ways of
working with nipype.

This is not a comprehensive git [http://git-scm.com/] reference, it’s just a workflow for our
own project. It’s tailored to the github [http://github.com] hosting service. You may well
find better or quicker ways of getting stuff done with git [http://git-scm.com/], but these
should get you started.

For general resources for learning git [http://git-scm.com/] see git resources.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/mipav.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Using MIPAV, JIST, and CBS Tools

If you are trying to use MIPAV, JIST or CBS Tools interfaces you need
to configure CLASSPATH environmental variable correctly. It needs to
include extensions shipped with MIPAV, MIPAV itself and MIPAV plugins.
For example:

In order to use the standalone MCR version of spm, you need to ensure that
the following commands are executed at the beginning of your script:

location of additional JAVA libraries to use
JAVALIB=/Applications/mipav/jre/Contents/Home/lib/ext/

location of the MIPAV installation to use
MIPAV=/Applications/mipav
location of the plugin installation to use
please replace 'ThisUser' by your user name
PLUGINS=/Users/ThisUser/mipav/plugins

export CLASSPATH=$JAVALIB/*:$MIPAV:$MIPAV/lib/*:$PLUGINS

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/gitwash/configure_git.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Configure git

Overview

Your personal git [http://git-scm.com/] configurations are saved in the .gitconfig file in
your home directory.
Here is an example .gitconfig file:

[user]
 name = Your Name
 email = you@yourdomain.example.com

[alias]
 ci = commit -a
 co = checkout
 st = status -a
 stat = status -a
 br = branch
 wdiff = diff --color-words

[core]
 editor = vim

[merge]
 summary = true

You can edit this file directly or you can use the git config --global
command:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file,
or run the commands above.

In detail

user.name and user.email

It is good practice to tell git [http://git-scm.com/] who you are, for labeling any changes
you make to the code. The simplest way to do this is from the command
line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file, which
should now contain a user section with your name and email:

[user]
 name = Your Name
 email = you@yourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com
with your actual name and email address.

Aliases

You might well benefit from some aliases to common commands.

For example, you might well want to be able to shorten git checkout
to git co. Or you may want to alias git diff --color-words
(which gives a nicely formatted output of the diff) to git wdiff

The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents
like this:

[alias]
 ci = commit -a
 co = checkout
 st = status -a
 stat = status -a
 br = branch
 wdiff = diff --color-words

Editor

You may also want to make sure that your editor of choice is used

git config --global core.editor vim

Merging

To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
 log = true

Or from the command line:

git config --global merge.log true

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/gitwash/set_up_fork.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Set up your fork

First you follow the instructions for Making your own copy (fork) of nipype.

Overview

git clone git@github.com:your-user-name/nipype.git
cd nipype
git remote add upstream git://github.com/nipy/nipype.git

In detail

Clone your fork

		Clone your fork to the local computer with git clone
git@github.com:your-user-name/nipype.git

		Investigate. Change directory to your new repo: cd nipype. Then
git branch -a to show you all branches. You’ll get something
like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and
that you also have a remote connection to origin/master.
What remote repository is remote/origin? Try git remote -v to
see the URLs for the remote. They will point to your github [http://github.com] fork.

Now you want to connect to the upstream nipype github [http://github.com/nipy/nipype] repository, so
you can merge in changes from trunk.

Linking your repository to the upstream repo

cd nipype
git remote add upstream git://github.com/nipy/nipype.git

upstream here is just the arbitrary name we’re using to refer to the
main nipype [http://nipy.org/nipype] repository at nipype github [http://github.com/nipy/nipype].

Note that we’ve used git:// for the URL rather than git@. The
git:// URL is read only. This means we that we can’t accidentally
(or deliberately) write to the upstream repo, and we are only going to
use it to merge into our own code.

Just for your own satisfaction, show yourself that you now have a new
‘remote’, with git remote -v show, giving you something like:

upstream git://github.com/nipy/nipype.git (fetch)
upstream git://github.com/nipy/nipype.git (push)
origin git@github.com:your-user-name/nipype.git (fetch)
origin git@github.com:your-user-name/nipype.git (push)

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

devel/gitwash/following_latest.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Following the latest source

These are the instructions if you just want to follow the latest
nipype source, but you don’t need to do any development for now.

The steps are:

		Install git

		get local copy of the git repository from github [http://github.com]

		update local copy from time to time

Get the local copy of the code

From the command line:

git clone git://github.com/nipy/nipype.git

You now have a copy of the code tree in the new nipype directory.

Updating the code

From time to time you may want to pull down the latest code. Do this with:

cd nipype
git pull

The tree in nipype will now have the latest changes from the initial
repository.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/select_files.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

The SelectFiles Interfaces

Nipype 0.9 introduces a new interface for intelligently finding files on the
disk and feeding them into your workflows: SelectFiles. SelectFiles is intended as a simpler
alternative to the DataGrabber
interface that was discussed previously in DataGrabber and DataSink explained.

SelectFiles is built on Python format strings [http://docs.python.org/2/library/string.html#format-string-syntax], which
are similar to the Python string interpolation feature you are likely already
familiar with, but advantageous in several respects. Format strings allow you
to replace named sections of template strings set off by curly braces ({}),
possibly filtered through a set of functions that control how the values are
rendered into the string. As a very basic example, we could write

msg = "This workflow uses {package}"

and then format it with keyword arguments:

print msg.format(package="FSL")

SelectFiles only requires that you provide templates that can be used to find
your data; the actual formatting happens behind the scenes.

Consider a basic example in which you want to select a T1 image and multple
functional images for a number of subjects. Invoking SelectFiles in this case
is quite straightforward:

from nipype import SelectFiles
templates = dict(T1="data/{subject_id}/struct/T1.nii",
 epi="data/{subject_id}/func/epi_run*.nii")
sf = SelectFiles(templates)

SelectFiles will take the templates dictionary and parse it to determine its
own inputs and oututs. Specifically, each name used in the format spec (here
just subject_id) will become an interface input, and each key in the
dictionary (here T1 and epi) will become interface outputs. The templates
dictionary thus succinctly links the node inputs to the appropriate outputs.
You’ll also note that, as was the case with DataGrabber, you can use basic
glob [http://docs.python.org/2.7/library/glob.html] syntax to match multiple
files for a given output field. Additionally, any of the conversions outlined in the Python documentation for format strings can be used in the templates.

There are a few other options that help make SelectFiles flexible enough to
deal with any situation where you need to collect data. Like DataGrabber,
SelectFiles has a base_directory parameter that allows you to specify a path
that is common to all of the values in the templates dictionary.
Additionally, as glob does not return a sorted list, there is also a
sort_filelist option, taking a boolean, to control whether sorting should be
applied (it is True by default).

The final input is force_lists, which controls how SelectFiles behaves in
cases where only a single file matches the template. The default behavior is
that when a template matches multiple files they are returned as a list, while
a single file is returned as a string. There may be situations where you want
to force the outputs to always be returned as a list (for example, you are
writing a workflow that expects to operate on several runs of data, but some of
your subjects only have a single run). In this case, force_lists can be used
to tune the outputs of the interface. You can either use a boolean value, which
will be applied to every output the interface has, or you can provide a list of
the output fields that should be coerced to a list. Returning to our basic
example, you may want to ensure that the epi files are returned as a list,
but you only ever will have a single T1 file. In this case, you would do

sf = SelectFiles(templates, force_lists=["epi"])

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/model_specification.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Model Specification for First Level fMRI Analysis

Nipype provides a general purpose model specification mechanism with
specialized subclasses for package specific extensions.

General purpose model specification

The SpecifyModel provides a generic mechanism for model
specification. A mandatory input called subject_info provides paradigm
specification for each run corresponding to a subject. This has to be in
the form of a Bunch or a list of Bunch objects (one for each
run). Each Bunch object contains the following attribules.

Required for most designs

		conditions : list of names

		onsets : lists of onsets corresponding to each condition

		
		durations : lists of durations corresponding to each condition. Should be

		left to a single 0 if all events are being modelled as impulses.

Optional

		regressor_names : list of names corresponding to each column. Should be None if automatically assigned.

		regressors : list of lists. values for each regressor - must correspond to the number of volumes in the functional run

		
		amplitudes : lists of amplitudes for each event. This will be ignored by

		SPM’s Level1Design.

The following two (tmod, pmod) will be ignored by any
Level1Design class other than SPM:

		
		tmod : lists of conditions that should be temporally modulated. Should

		default to None if not being used.

		
		pmod : list of Bunch corresponding to conditions

		
		name : name of parametric modulator

		param : values of the modulator

		poly : degree of modulation

An example Bunch definition:

from nipype.interfaces.base import Bunch
condnames = ['Tapping', 'Speaking', 'Yawning']
event_onsets = [[0, 10, 50], [20, 60, 80], [30, 40, 70]]
durations = [[0],[0],[0]]

subject_info = Bunch(conditions=condnames,
 onsets = event_onsets,
 durations = durations)

Alternatively, you can provide condition, onset, duration and amplitude
information through event files. The event files have to be in 1,2 or 3
column format with the columns corresponding to Onsets, Durations and
Amplitudes and they have to have the name event_name.run<anything else>
e.g.: Words.run001.txt. The event_name part will be used to create the
condition names. Words.run001.txt may look like:

Word Onsets Durations
 0 10
 20 10
 ...

or with amplitudes:

Word Onsets Durations Amplitudes
0 10 1
20 10 1
...

Together with this information, one needs to specify:

		whether the durations and event onsets are specified in terms of scan volumes
or secs.

		the high-pass filter cutoff,

		the repetition time per scan

		functional data files corresponding to each run.

Optionally you can specify realignment parameters, outlier indices.
Outlier files should contain a list of numbers, one per row indicating
which scans should not be included in the analysis. The numbers are
0-based.

SPM specific attributes

in addition to the generic specification options, several SPM specific
options can be provided. In particular, the subject_info function can
provide temporal and parametric modulators in the Bunch attributes tmod
and pmod. The following example adds a linear parametric modulator for
speaking rate for the events specified earlier:

pmod = [None, Bunch(name=['Rate'], param=[[.300, .500, .600]],
 poly=[1]), None]
subject_info = Bunch(conditions=condnames,
 onsets = event_onsets,
 durations = durations,
 pmod = pmod)

SpecifySPMModel also allows specifying additional components.
If you have a study with multiple runs, you can choose to concatenate
conditions from different runs. by setting the input
option concatenate_runs to True. You can also choose to set the
output options for this class to be in terms of ‘scans’.

Sparse model specification

In addition to standard models, SpecifySparseModel allows model
generation for sparse and sparse-clustered acquisition experiments.
Details of the model generation and utility are provided in Ghosh et
al. (2009) OHBM 2009. [http://dl.dropbox.com/u/363467/OHBM2009_HRF.pdf]

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

users/caching_tutorial.html

 Navigation

 		
 index

 		nipy pipeline and interfaces package »

Interface caching

This section details the interface-caching mechanism, exposed in the
nipype.caching module.

Interface caching: why and how

		Pipelines (also called workflows) specify
processing by an execution graph. This is useful because it opens the
door to dependency checking and enable i) to minimize
recomputations, ii) to have the execution engine transparently deal
with intermediate file manipulations.

They however do not blend in well with arbitrary Python code, as they
must rely on their own execution engine.

		Interfaces give fine control of the
execution of each step with a thin wrapper on the underlying software.
As a result that can easily be inserted in Python code.

However, they force the user to specify explicit input and output file
names and cannot do any caching.

This is why nipype exposes an intermediate mechanism, caching that
provides transparent output file management and caching within imperative
Python code rather than a workflow.

A big picture view: using the Memory object

nipype caching relies on the Memory class: it creates an
execution context that is bound to a disk cache:

>>> from nipype.caching import Memory
>>> mem = Memory(base_dir='.')

Note that the caching directory is a subdirectory called nipype_mem of
the given base_dir. This is done to avoid polluting the base director.

In the corresponding execution context, nipype interfaces can be turned
into callables that can be used as functions using the
Memory.cache() method. For instance if we want to run the fslMerge
command on a set of files:

>>> from nipype.interface import fsl
>>> fsl_merge = mem.cache(fsl.Merge)

Note that the Memory.cache() method takes interfaces classes,
and not instances.

The resulting fsl_merge object can be applied as a function to
parameters, that will form the inputs of the merge fsl commands. Those
inputs are given as keyword arguments, bearing the same name as the
name in the inputs specs of the interface. In IPython, you can also get
the argument list by using the fsl_merge? synthax to inspect the docs:

In [10]: fsl_merge?
String Form:PipeFunc(nipype.interfaces.fsl.utils.Merge, base_dir=/home/varoquau/dev/nipype/nipype/caching/nipype_mem)
Namespace: Interactive
File: /home/varoquau/dev/nipype/nipype/caching/memory.py
Definition: fsl_merge(self, **kwargs)
Docstring:
Use fslmerge to concatenate images

Inputs

Mandatory:
dimension: dimension along which the file will be merged
in_files: None

Optional:
args: Additional parameters to the command
environ: Environment variables (default={})
ignore_exception: Print an error message instead of throwing an exception in case the interface fails to run (default=False)
merged_file: None
output_type: FSL output type

Outputs

merged_file: None
Class Docstring:
...

Thus fsl_merge is applied to parameters as such:

>>> results = fsl_merge(dimension='t', in_files=['a.nii.gz', 'b.nii.gz'])
INFO:workflow:Executing node faa7888f5955c961e5c6aa70cbd5c807 in dir: /home/varoquau/dev/nipype/nipype/caching/nipype_mem/nipype-interfaces-fsl-utils-Merge/faa7888f5955c961e5c6aa70cbd5c807
INFO:workflow:Running: fslmerge -t /home/varoquau/dev/nipype/nipype/caching/nipype_mem/nipype-interfaces-fsl-utils-Merge/faa7888f5955c961e5c6aa70cbd5c807/a_merged.nii /home/varoquau/dev/nipype/nipype/caching/a.nii.gz /home/varoquau/dev/nipype/nipype/caching/b.nii.gz

The results are standard nipype nodes results. In particular, they expose
an outputs attribute that carries all the outputs of the process, as
specified by the docs.

>>> results.outputs.merged_file
'/home/varoquau/dev/nipype/nipype/caching/nipype_mem/nipype-interfaces-fsl-utils-Merge/faa7888f5955c961e5c6aa70cbd5c807/a_merged.nii'

Finally, and most important, if the node is applied to the same input
parameters, it is not computed, and the results are reloaded from the
disk:

>>> results = fsl_merge(dimension='t', in_files=['a.nii.gz', 'b.nii.gz'])
INFO:workflow:Executing node faa7888f5955c961e5c6aa70cbd5c807 in dir: /home/varoquau/dev/nipype/nipype/caching/nipype_mem/nipype-interfaces-fsl-utils-Merge/faa7888f5955c961e5c6aa70cbd5c807
INFO:workflow:Collecting precomputed outputs

Once the Memory is set up and you are applying it to data, an
important thing to keep in mind is that you are using up disk cache. It
might be useful to clean it using the methods that Memory
provides for this: Memory.clear_previous_runs(),
Memory.clear_runs_since().

Example

A full-blown example showing how to stage multiple operations can be
found in the caching_example.py file.

Usage patterns: working efficiently with caching

The goal of the caching module is to enable writing plain Python code
rather than workflows. Use it: instead of data grabber nodes, use for
instance the glob module. To vary parameters, use for loops. To make
reusable code, write Python functions.

One good rule of thumb to respect is to avoid the usage of explicit
filenames apart from the outermost inputs and outputs of your
processing. The reason being that the caching mechanism of
nipy.caching takes care of generating the unique hashes, ensuring
that, when you vary parameters, files are not overridden by the output of
different computations.

Debuging

If you need to inspect the running environment of the nodes, it may
be useful to know where they were executed. With nipype.caching,
you do not control this location as it is encoded by hashes.

To find out where an operation has been persisted, simply look in
it’s output variable:

out.runtime.cwd

Finally, the more you explore different parameters, the more you risk
creating cached results that will never be reused. Keep in mind that it
may be useful to flush the cache using Memory.clear_previous_runs()
or Memory.clear_runs_since().

API reference

The main class of the nipype.caching module is the Memory
class:

		
class nipype.caching.Memory(base_dir)

		Memory context to provide caching for interfaces

		Parameters:		base_dir: string :

The directory name of the location for the caching

Methods

		
cache(interface)

		Returns a callable that caches the output of an interface

		Parameters:		interface: nipype interface :

The nipype interface class to be wrapped and cached

		Returns:		pipe_func: a PipeFunc callable object :

An object that can be used as a function to apply the
interface to arguments. Inputs of the interface are given
as keyword arguments, bearing the same name as the name
in the inputs specs of the interface.

Examples

>>> from tempfile import mkdtemp
>>> mem = Memory(mkdtemp())
>>> from nipype.interfaces import fsl

Here we create a callable that can be used to apply an
fsl.Merge interface to files

>>> fsl_merge = mem.cache(fsl.Merge)

Now we apply it to a list of files. We need to specify the
list of input files and the dimension along which the files
should be merged.

>>> results = fsl_merge(in_files=['a.nii', 'b.nii'],
... dimension='t')

We can retrieve the resulting file from the outputs:
>>> results.outputs.merged_file # doctest: +SKIP
‘...’

		
clear_previous_runs(warn=True)

		Remove all the cache that where not used in the latest run of
the memory object: i.e. since the corresponding Python object
was created.

		Parameters:		warn: boolean, optional :

If true, echoes warning messages for all directory
removed

		
clear_runs_since(day=None, month=None, year=None, warn=True)

		Remove all the cache that where not used since the given date

		Parameters:		day, month, year: integers, optional :

The integers specifying the latest day (in localtime) that
a node should have been accessed to be kept. If not
given, the current date is used.

warn: boolean, optional :

If true, echoes warning messages for all directory
removed

Also used are the PipeFunc, callables that are returned by the
Memory.cache() decorator:

		
class nipype.caching.memory.PipeFunc(interface, base_dir, callback=None)

		Callable interface to nipype.interface objects

Use this to wrap nipype.interface object and call them
specifying their input with keyword arguments:

fsl_merge = PipeFunc(fsl.Merge, base_dir='.')
out = fsl_merge(in_files=files, dimension='t')

Methods

		__call__(**kwargs)
		

		
__init__(interface, base_dir, callback=None)

		

		Parameters:		interface: a nipype interface class :

The interface class to wrap

base_dir: a string :

The directory in which the computation will be
stored

callback: a callable :

An optional callable called each time after the function
is called.

 © Copyright 2009-15, Neuroimaging in Python team.
 Created using Sphinx 1.3.1.

